Skip to main content

Advertisement

Log in

Overexpression of PAX5 induces apoptosis in multiple myeloma cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

PAX5 is an essential transcription factor for the commitment of lymphoid progenitors to the B-lymphocyte lineage. PAX5 suppression results in retrodifferentiation of B lymphocytes to an uncommitted progenitor cell stage, whereas PAX5 suppression in mature B lymphocytes leads to further development into plasma cells. Here, we have analyzed the fate of plasma cell lines following PAX5 reexpression. Human B cell lines were infected with Ad5/F35 adenoviruses encoding either EYFP or PAX5. Expression analysis of specific plasma cell transcription factors (IRF4, Blimp-1 and XBP-1) suggests that PAX5 reexpression does not induce retrodifferentiation of plasma cells into B lymphocytes. Interestingly, the viability of RPMI-8226 and U266 multiple myeloma cell lines markedly declined at 4–7 days post-transduction, whereas other plasma cell lines maintained their viability. Apoptosis analysis through Annexin V measurement also revealed a higher level of apoptosis in PAX5-expressing myeloma cell lines. Finally, Western blot analysis of pro- and anti-apoptotic proteins revealed that the anti-apoptotic protein MCL-1 was down-modulated in PAX5-transduced multiple myeloma cell lines. In conclusion, our results show that the expression of PAX5 in plasma cell lines induces apoptosis exclusively in multiple myelomas. This might represent a potential therapeutic avenue in the treatment of multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nat Immunol. 2007;8:463–70.

    Article  CAS  PubMed  Google Scholar 

  2. Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006;24:269–81.

    Article  CAS  PubMed  Google Scholar 

  3. Barberis A, Widenhorn K, Vitelli L, Busslinger M. A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev. 1990;4:849–59.

    Article  CAS  PubMed  Google Scholar 

  4. Adams B, Dorfler P, Aguzzi A, Kozmik Z, Urbanek P, Maurer-Fogy I, et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 1992;6:1589–607.

    Article  CAS  PubMed  Google Scholar 

  5. Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.

    Article  CAS  PubMed  Google Scholar 

  6. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–62.

    Article  CAS  PubMed  Google Scholar 

  7. Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M. The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol. 1992;12:2662–72.

    CAS  PubMed  Google Scholar 

  8. Nutt SL, Morrison AM, Dorfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 1998;17:2319–33.

    Article  CAS  PubMed  Google Scholar 

  9. Fitzsimmons D, Hodsdon W, Wheat W, Maira SM, Wasylyk B, Hagman J. Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 1996;10:2198–211.

    Article  CAS  PubMed  Google Scholar 

  10. Schebesta M, Pfeffer PL, Busslinger M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity. 2002;17:473–85.

    Article  CAS  PubMed  Google Scholar 

  11. Hesslein DG, Pflugh DL, Chowdhury D, Bothwell AL, Sen R, Schatz DG. Pax5 is required for recombination of transcribed, acetylated, 5’ IgH V gene segments. Genes Dev. 2003;17:37–42.

    Article  CAS  PubMed  Google Scholar 

  12. Nutt SL, Urbanek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 1997;11:476–91.

    Article  CAS  PubMed  Google Scholar 

  13. Schaniel C, Bruno L, Melchers F, Rolink AG. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones. Blood. 2002;99:472–8.

    Article  CAS  PubMed  Google Scholar 

  14. Rolink AG, Nutt SL, Melchers F, Busslinger M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature. 1999;401:603–6.

    Article  CAS  PubMed  Google Scholar 

  15. Mikkola I, Heavey B, Horcher M, Busslinger M. Reversion of B cell commitment upon loss of Pax5 expression. Science. 2002;297:110–3.

    Article  CAS  PubMed  Google Scholar 

  16. Holmes ML, Pridans C, Nutt SL. The regulation of the B-cell gene expression programme by Pax5. Immunol Cell Biol. 2008;86:47–53.

    Article  CAS  PubMed  Google Scholar 

  17. Holmes ML, Carotta S, Corcoran LM, Nutt SL. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 2006;20:933–8.

    Article  CAS  PubMed  Google Scholar 

  18. Souabni A, Cobaleda C, Schebesta M, Busslinger M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity. 2002;17:781–93.

    Article  CAS  PubMed  Google Scholar 

  19. Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, et al. Loss of Pax5 promotes plasma cell differentiation. Immunity. 2006;24:283–93.

    Article  CAS  PubMed  Google Scholar 

  20. Kallies A, Hasbold J, Fairfax K, Pridans C, Emslie D, McKenzie BS, et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity. 2007;26:555–66.

    Article  CAS  PubMed  Google Scholar 

  21. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412:300–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rinkenberger JL, Wallin JJ, Johnson KW, Koshland ME. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity. 1996;5:377–86.

    Article  CAS  PubMed  Google Scholar 

  23. Cayer MP, Drouin M, Proulx M, Jung D. 2-Methoxyestradiol induce the conversion of human peripheral blood memory B lymphocytes into plasma cells. J Immunol Methods. 2010;355:29–39.

    Article  CAS  PubMed  Google Scholar 

  24. Cayer MP, Drouin M, Sea SP, Forest A, Cote S, Simard C, et al. Comparison of promoter activities for efficient expression into human B cells and haematopoietic progenitors with adenovirus Ad5/F35. J Immunol Methods. 2007;322:118–27.

    Article  CAS  PubMed  Google Scholar 

  25. Jung D, Neron S, Drouin M, Jacques A. Efficient gene transfer into normal human B lymphocytes with the chimeric adenoviral vector Ad5/F35. J Immunol Methods. 2005;304:78–87.

    Article  CAS  PubMed  Google Scholar 

  26. Drouin M, Cayer MP, Jung D. Adenovirus 5 and chimeric adenovirus 5/F35 employ distinct B-lymphocyte intracellular trafficking routes that are independent of their cognate cell surface receptor. Virology. 2010;401:305–13.

    Article  CAS  PubMed  Google Scholar 

  27. Cayer MP, Proulx M, Ma XZ, Sakac D, Giguere JF, Drouin M, et al. c-Src tyrosine kinase co-associates with and phosphorylates signal transducer and activator of transcription 5b which mediates the proliferation of normal human B lymphocytes. Clin Exp Immunol. 2009;156:419–27.

    Article  CAS  PubMed  Google Scholar 

  28. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–6.

    Article  CAS  PubMed  Google Scholar 

  29. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998;17:3247–59.

    Article  PubMed  Google Scholar 

  30. Jourdan M, Reme T, Goldschmidt H, Fiol G, Pantesco V, De Vos J, et al. Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol. 2009;145:45–58.

    Article  CAS  PubMed  Google Scholar 

  31. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002;99:1885–93.

    Article  CAS  PubMed  Google Scholar 

  33. Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100:194–9.

    Article  CAS  PubMed  Google Scholar 

  34. Warr MR, Acoca S, Liu Z, Germain M, Watson M, Blanchette M, et al. BH3-ligand regulates access of MCL-1 to its E3 ligase. FEBS Lett. 2005;579:5603–8.

    CAS  PubMed  Google Scholar 

  35. Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F, et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 2003;17:1475–86.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 2005;121:1085–95.

    Article  CAS  PubMed  Google Scholar 

  37. Zall H, Weber A, Besch R, Zantl N, Hacker G. Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1. Mol Cancer. 2010;9:164.

    Google Scholar 

  38. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053–8.

    Article  CAS  PubMed  Google Scholar 

  39. Huang CR, Yang-Yen HF. The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity. FEBS Lett. 2010;584:3323–30.

    Article  CAS  PubMed  Google Scholar 

  40. Kallies A, Nutt SL. Terminal differentiation of lymphocytes depends on Blimp-1. Curr Opin Immunol. 2007;19:156–62.

    Article  CAS  PubMed  Google Scholar 

  41. Fecteau JF, Cote G, Neron S. A new memory CD27-IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J Immunol. 2006;177:3728–36.

    CAS  PubMed  Google Scholar 

  42. Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341:1520–9.

    Article  CAS  PubMed  Google Scholar 

  43. Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.

    Article  CAS  PubMed  Google Scholar 

  44. Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25:225–36.

    Article  CAS  PubMed  Google Scholar 

  45. Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.

    Article  CAS  PubMed  Google Scholar 

  46. Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002;17:51–62.

    Article  CAS  PubMed  Google Scholar 

  47. Shapiro-Shelef M, Lin KI, Savitsky D, Liao J, Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med. 2005;202:1471–6.

    Article  CAS  PubMed  Google Scholar 

  48. Reimold AM, Ponath PD, Li YS, Hardy RR, David CS, Strominger JL, et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med. 1996;183:393–401.

    Article  CAS  PubMed  Google Scholar 

  49. Iwakoshi NN, Lee AH, Glimcher LH. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol Rev. 2003;194:29–38.

    Article  CAS  PubMed  Google Scholar 

  50. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21:81–93.

    Article  CAS  PubMed  Google Scholar 

  51. Jagannath S, Tricot G, Barlogie B. Autotransplants in multiple myeloma: pushing the envelope. Hematol Oncol Clin North Am. 1997;11:363–81.

    Article  CAS  PubMed  Google Scholar 

  52. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335:91–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Maryse Proulx is supported by a scholar grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). We are grateful to Jean-François Leblanc for its comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jung.

About this article

Cite this article

Proulx, M., Cayer, MP., Drouin, M. et al. Overexpression of PAX5 induces apoptosis in multiple myeloma cells. Int J Hematol 92, 451–462 (2010). https://doi.org/10.1007/s12185-010-0691-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0691-9

Keywords

Navigation