Skip to main content
Log in

Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Janus kinase 1 (JAK1) and JAK3 plays a critical role in lymphocyte proliferation and differentiation. Somatic JAK1 mutations are found in 18% of adult precursor T acute lymphoblastic leukemias and somatic JAK3 mutations are found in 3.3% of cutaneous T cell lymphomas. Some of the mutations are confirmed as a gain-of-function mutation and are assumed to be involved in leukemogenesis. Adult T cell leukemia/lymphoma (ATLL) is a type of T cell neoplasm, and activation of JAK/STAT pathways is sometimes observed in them. We investigated JAK1 and JAK3 mutations in 20 ATLL patients. No JAK1 mutations were found, and five types of single nucleotide polymorphisms were observed in 12 cases, whose frequencies almost match those in Asian populations. As for JAK3, a synonymous mutation was found in one case. JAK1 and JAK3 mutations are unlikely involved in the leukemogenesis of ATLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mortreux F, Gabet AS, Wattel E. Molecular and cellular aspects of HTLV-1 associated leukemogenesis in vivo. Leukemia. 2003;17:26–38.

    Article  CAS  PubMed  Google Scholar 

  2. Yasunaga J, Matsuoka M. Leukaemogenic mechanism of human T-cell leukaemia virus type I. Rev Med Virol. 2007;17:301–11.

    Article  CAS  PubMed  Google Scholar 

  3. Maruyama M, Shibuya H, Harada H, Hatakeyama M, Seiki M, Fujita T, et al. Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-1-encoded p40x and T3/Ti complex triggering. Cell. 1987;48:343–50.

    Article  CAS  PubMed  Google Scholar 

  4. Siekevitz M, Feinberg MB, Holbrook N, Wong-Staal F, Greene WC. Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I. Proc Natl Acad Sci USA. 1987;84:5389–93.

    Article  CAS  PubMed  Google Scholar 

  5. Baba H, Yamada Y, Mori N, Hayashibara T, Harasawa H, Tsuruda K, et al. Multiple gammac-receptor expression in adult T-cell leukemia. Eur J Haematol. 2002;68:362–9.

    Article  CAS  PubMed  Google Scholar 

  6. Horie R. NF-kappaB in pathogenesis and treatment of adult T-cell leukemia/lymphoma. Int Rev Immunol. 2007;26:269–81.

    Article  CAS  PubMed  Google Scholar 

  7. Takemoto S, Mulloy JC, Cereseto A, Migone TS, Patel BK, Matsuoka M, et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci USA. 1997;94:13897–902.

    Article  CAS  PubMed  Google Scholar 

  8. Yamada Y, Kamihira S. Inactivation of tumor suppressor genes and the progression of adult T-cell leukemia-lymphoma. Leuk Lymphoma. 2005;46:1553–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hofmann WK, Tsukasaki K, Takeuchi N, Takeuchi S, Koeffler HP. Methylation analysis of cell cycle control genes in adult T-cell leukemia/lymphoma. Leuk Lymphoma. 2001;42:1107–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228:273–87.

    Article  CAS  PubMed  Google Scholar 

  11. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9.

    CAS  PubMed  Google Scholar 

  12. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93:373–83.

    Article  CAS  PubMed  Google Scholar 

  13. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93:397–409.

    Article  CAS  PubMed  Google Scholar 

  14. Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science. 1995;270:794–7.

    Article  CAS  PubMed  Google Scholar 

  15. Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity. 1995;3:771–82.

    Article  CAS  PubMed  Google Scholar 

  16. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997;278:1309–12.

    Article  CAS  PubMed  Google Scholar 

  17. Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997;90:2535–40.

    CAS  PubMed  Google Scholar 

  18. Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L, et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med. 2008;205:751–8.

    Article  CAS  PubMed  Google Scholar 

  19. Xiang Z, Zhao Y, Mitaksov V, Fremont DH, Kasai Y, Molitoris A, et al. Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood. 2008;111:4809–12.

    Article  CAS  PubMed  Google Scholar 

  20. Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T, et al. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood. 2008;111:4797–808.

    Article  CAS  PubMed  Google Scholar 

  21. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  CAS  PubMed  Google Scholar 

  22. Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7:673–83.

    Article  CAS  PubMed  Google Scholar 

  23. Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, Elimelech A, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372:1484–92.

    Article  CAS  PubMed  Google Scholar 

  24. Walters DK, Mercher T, Gu TL, O’Hare T, Tyner JW, Loriaux M, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell. 2006;10:65–75.

    Article  CAS  PubMed  Google Scholar 

  25. Cornejo MG, Kharas MG, Werneck MB, Le Bras S, Moore SA, Ball B, et al. Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models. Blood. 2009;113:2746–54.

    Article  CAS  PubMed  Google Scholar 

  26. Migone TS, Lin JX, Cereseto A, Mulloy JC, O’Shea JJ, Franchini G, et al. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science. 1995;269:79–81.

    Article  CAS  PubMed  Google Scholar 

  27. De Vita S, Mulligan C, McElwaine S, Dagna-Bricarelli F, Spinelli M, Basso G, et al. Loss-of-function JAK3 mutations in TMD and AMKL of Down syndrome. Br J Haematol. 2007;137:337–41.

    Article  PubMed  Google Scholar 

  28. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol. 1991;79:428–37.

    Article  CAS  PubMed  Google Scholar 

  29. Consortium TIH. The international HapMap project. Nature. 2003;426:789–96.

    Article  Google Scholar 

  30. Consortium TIH. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  Google Scholar 

  31. Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science. 1994;266:1042–5.

    Article  CAS  PubMed  Google Scholar 

  32. Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, et al. Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature. 1994;370:153–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zeng YX, Takahashi H, Shibata M, Hirokawa K. JAK3 Janus kinase is involved in interleukin 7 signal pathway. FEBS Lett. 1994;353:289–93.

    Article  CAS  PubMed  Google Scholar 

  34. Mulloy JC, Migone TS, Ross TM, Ton N, Green PL, Leonard WJ, et al. Human and simian T-cell leukemia viruses type 2 (HTLV-2 and STLV-2(pan-p)) transform T cells independently of Jak/STAT activation. J Virol. 1998;72:4408–12.

    CAS  PubMed  Google Scholar 

  35. Tomita M, Kawakami H, Uchihara JN, Okudaira T, Masuda M, Matsuda T, et al. Inhibition of constitutively active Jak-Stat pathway suppresses cell growth of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Retrovirology. 2006;3:22.

    Article  PubMed  Google Scholar 

  36. Zhang Q, Lee B, Korecka M, Li G, Weyland C, Eck S, et al. Differences in phosphorylation of the IL-2R associated JAK/STAT proteins between HTLV-I(+), IL-2-independent and IL-2-dependent cell lines and uncultured leukemic cells from patients with adult T-cell lymphoma/leukemia. Leuk Res. 1999;23:373–84.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng J, Zhang D, Zhou C, Marasco WA. Down-regulation of SHP1 and up-regulation of negative regulators of JAK/STAT signaling in HTLV-1 transformed cell lines and freshly transformed human peripheral blood CD4+ T-cells. Leuk Res. 2004;28:71–82.

    Article  CAS  PubMed  Google Scholar 

  38. Jeong EG, Kim MS, Nam HK, Min CK, Lee S, Chung YJ, et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res. 2008;14:3716–21.

    Article  CAS  PubMed  Google Scholar 

  39. Sato T, Toki T, Kanezaki R, Xu G, Terui K, Kanegane H, et al. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome. Br J Haematol. 2008;141:681–8.

    Article  CAS  PubMed  Google Scholar 

  40. Tsukasaki K, Miller CW, Kubota T, Takeuchi S, Fujimoto T, Ikeda S, et al. Tumor necrosis factor alpha polymorphism associated with increased susceptibility to development of adult T-cell leukemia/lymphoma in human T-lymphotropic virus type 1 carriers. Cancer Res. 2001;61:3770–4.

    CAS  PubMed  Google Scholar 

  41. Farre L, Bittencourt AL, Silva-Santos G, Almeida A, Silva AC, Decanine D, et al. Fas 670 promoter polymorphism is associated to susceptibility, clinical presentation, and survival in adult T cell leukemia. J Leukoc Biol. 2008;83:220–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the International HapMap Consortium for the SNP frequency data of the JAK1 gene. We also thank M Matsushita, T Shinmori, E Torii, K Tsugura, Y Kuroki, M Ebihara and K Toyama for their excellent technical assistance.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shimoda.

About this article

Cite this article

Kameda, T., Shide, K., Shimoda, H.K. et al. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma. Int J Hematol 92, 320–325 (2010). https://doi.org/10.1007/s12185-010-0653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0653-2

Keywords

Navigation