Skip to main content

Advertisement

Log in

Effect of wild type PTEN gene on proliferation and invasion of multiple myeloma

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

We explored the effect of the wild type PTEN gene on the proliferation, apoptosis and invasive ability of multiple myeloma (MM) cells from MM patients and RPMI 8226 cells (a human myeloma cell line), and the effect of the PTEN/focal adhesion kinase (FAK)/MMP signaling pathway on the invasion activity of RPMI 8226 cells. The proliferation of RPMI 8226 cells and purified myeloma cells from MM patients were markedly inhibited after these cells were transfected with recombinant adenovirus-PTEN vectors containing green fluorescent protein (Ad-PTEN-GFP). Maximum growth inhibition of RPMI 8226 cells and purified myeloma cells from MM patients by AD-PTEN-GFP was 42.01 and 24.75%, respectively. After transfection with PTEN-siRNA, the proliferation of RPMI 8226 cells was increased significantly compared with NS-siRNA transfected controls. The maximal survival rate was 141.55 ± 8.34% in PTEN-siRNA transfected RPMI 8226 cells. Apoptosis of RPMI 8226 cells or purified myeloma cells from MM patients in the Ad-PTEN-GFP group was increased significantly when compared with that in the Ad-GFP (adenovirus vectors only expressing green fluorescent protein) group (p < 0.01). The cell cycle of RPMI 8226 cells was arrested at the G2/M phase. Furthermore, the number of cells that migrated through the matrigel and filter from the upper chamber to the lower chamber in the transwell assay in the Ad-GFP group was significantly larger than that in the Ad-PTEN-GFP group (52.65 ± 7.39 vs. 23.50 ± 6.12, p < 0.01). In the PTEN-siRNA group, the cell number (79.50 ± 11.89) was significantly larger than that in the NS-siRNA group (47.17 ± 7.76, p < 0.01). When RPMI 8226 cells were transfected with Ad-PTEN-GFP or NS-siRNA, the expression level of PTEN mRNA was up-regulated, and the expression levels of FAK, MMP-2 and MMP-9 mRNA were down-regulated significantly compared with that of the Ad-GFP group and the PTEN-siRNA group (p < 0.01, p < 0.05). The protein levels of FAK and p-FAK, MMP-2 and MMP-9 in RPMI 8226 cells which were transfected with Ad-PTEN-GFP decreased significantly, but increased significantly in PTEN-siRNA transfected RPMI 8226 cells (p < 0.01, p<0.05). These results indicated that wild type PTEN, which inhibited FAK, MMP-2, and MMP-9, could suppress the proliferation and invasion ability of multiple myeloma cells. Modulating the expression of PTEN may be a potential strategy for the treatment of multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111(6):2962–72.

    Article  CAS  PubMed  Google Scholar 

  2. Strobeck M. Multiple myeloma therapies. Nat Rev Drug Discov. 2007;6(3):181–2.

    Article  CAS  PubMed  Google Scholar 

  3. Qiang YW, Walsh K, Yao L, et al. Wnts induce migration and invasion of myeloma plasma cells. Blood. 2005;106(5):1786–93.

    Article  CAS  PubMed  Google Scholar 

  4. Bao H, Jiang M, Zhu M, Sheng F, Ruan J, Ruan C. Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol. 2009;90(2):177–85.

    Article  CAS  PubMed  Google Scholar 

  5. Ullmannova-Benson V, Guan M, Zhou X, et al. DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway. Leukemia. 2009;23(2):383–90.

    Article  CAS  PubMed  Google Scholar 

  6. Chang H, Qi XY, Claudio J, Zhuang L, Patterson B, Stewart AK. Analysis of PTEN deletions and mutations in multiple myeloma. Leuk Res. 2006;30(3):262–5.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    Article  CAS  PubMed  Google Scholar 

  8. Tang Y, Eng C. PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer Res. 2006;66(2):736–42.

    Article  CAS  PubMed  Google Scholar 

  9. Ge NL, Rudikoff S. Expression of PTEN in PTEN-deficient multiple myeloma cells abolishes tumor growth in vivo. Oncogene. 2000;19(36):4091–5.

    Article  CAS  PubMed  Google Scholar 

  10. Aggerholm A, Gronbaek K, Guldberg P, Hokland P. Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur J Haematol. 2000;65(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki A, de la Pompa JL, Stambolic V, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol. 1998;8(21):1169–78.

    Article  CAS  PubMed  Google Scholar 

  12. Liu YL, Castleberry RP, Emanuel PD. PTEN deficiency is a common defect in juvenile myelomonocytic leukemia. Leuk Res. 2009;33(5):671–7.

    Article  CAS  PubMed  Google Scholar 

  13. Yang YC, Ho TC, Chen SL, Lai HY, Wu JY, Tsao YP. Inhibition of cell motility by troglitazone in human ovarian carcinoma cell line. BMC Cancer. 2007;7:216.

    Article  PubMed  Google Scholar 

  14. Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999;71(3–4):435–78.

    Article  CAS  PubMed  Google Scholar 

  15. Canel M, Secades P, Garzón-Arango M, et al. Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer. 2008;98(7):1274–84.

    Article  CAS  PubMed  Google Scholar 

  16. Hauck CR, Sieg DJ, Hsia DA, et al. Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res. 2001;61(19):7079–90.

    CAS  PubMed  Google Scholar 

  17. Zhang Y, Thant AA, Hiraiwa Y, et al. A role for focal adhesion kinase in hyluronan-dependent MMP-2 secretion in a human small-cell lung carcinoma cell line, QG90. Biochem Biophys Res Commun. 2002;290(3):1123–7.

    Article  CAS  PubMed  Google Scholar 

  18. Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng SY. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res. 2006;66(2):775–83.

    Article  CAS  PubMed  Google Scholar 

  19. Smith A, Wisloff F, Samson D. Guidelines on the diagnosis and management of multiple myeloma 2005. Br J Haematol. 2006;132(4):410–51.

    Article  PubMed  Google Scholar 

  20. Cheng ZY, Guo XL, Li SH, et al. The role of PTEN-FAK signaling pathway in metastasis and invasive ability of leukemia cells. Zhonghua Xue Ye Xue Za Zhi. 2009;30(2):115–20.

    CAS  PubMed  Google Scholar 

  21. Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. The lipid phosphatase activity of PTEN is critical for stabilizing intercellular junctions and reverting invasiveness. J Cell Biol. 2001;155(7):1129–35.

    Article  CAS  PubMed  Google Scholar 

  22. García-Sanz R, Orfão A, González M, et al. Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood. 1999;93(3):1032–7.

    PubMed  Google Scholar 

  23. Guikema JE, Vellenga E, Abdulahad WH, Hovenga S, Bos NA. CD27-triggering on primary plasma cell leukaemia cells has anti-apoptotic effects involving mitogen activated protein kinases. Br J Haematol. 2004;124(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  24. Fassas AB, Spencer T, Sawyer J, et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol. 2002;118(4):1041–7.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Grindley JC, Yin T, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441(7092):518–22.

    Article  CAS  PubMed  Google Scholar 

  26. Pene F, Claessens YE, Muller O, et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene. 2002;21(43):6587–97.

    Article  CAS  PubMed  Google Scholar 

  27. Shi Y, Gera J, Hu L, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. 2002;62:5027–34.

    CAS  PubMed  Google Scholar 

  28. Jacob AI, Romigh T, Waite KA, Eng C. Nuclear PTEN levels and G2 progression in melanoma cells. Melanoma Res. 2009;19(4):203–10.

    Article  CAS  PubMed  Google Scholar 

  29. Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet. 2006;15(17):2553–9.

    Article  CAS  PubMed  Google Scholar 

  30. Uegaki K, Kanamori Y, Kigawa J, et al. PTEN is involved in the signal transduction pathway of contact inhibition in endometrial cells. Cell Tissue Res. 2006;323(3):523–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tamura M, Gu J, Takino T, Yamada KM. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res. 1999;59(2):442–9.

    CAS  PubMed  Google Scholar 

  32. Oktay MH, Oktay K, Hamele-Bena D, Buyuk A, Koss LG. Focal adhesion kinase as a marker of malignant phenotype in breast and cervical carcinomas. Hum Pathol. 2003;34(3):240–5.

    Article  CAS  PubMed  Google Scholar 

  33. Kornberg LJ. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck. 1998;20(8):745–52.

    Article  CAS  PubMed  Google Scholar 

  34. Schlaepfer DD, Mitra SK. Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev. 2004;14(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  35. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    Article  CAS  PubMed  Google Scholar 

  36. Van Valckenborgh E, Croucher PI, De Raeve H, et al. Multifunctional role of matrix metalloproteinases in multiple myeloma. Am J Pathol. 2004;165(3):869–78.

    PubMed  Google Scholar 

  37. Kelly T, Børset M, Abe E, Gaddy-Kurten D, Sanderson RD. Matrix metalloproteinases in multiple myeloma. Leuk Lymphoma. 2000;37(3–4):273–81.

    CAS  PubMed  Google Scholar 

  38. Vacca A, Ribatti D, Roccaro AM, Frigeri A, Dammacco F. Bone marrow angiogenesis in patients with active multiple myeloma. Semin Oncol. 2001;28(6):543–50.

    Article  CAS  PubMed  Google Scholar 

  39. Hu Y, Sun CY, Huang J, Hong L, Zhang L, Chu ZB. Antimyeloma effects of resveratrol through inhibition of angiogenesis. Chin Med J. 2007;120(19):1672–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by 1. Nature Science Foundation of Hebei Province (C2008001097); 2. Research Fund for the Doctoral Program of Higher Education of China (No. 200800890011); 3. Emphases follow up programme of Health Bureau of Hebei Province (GL200508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Pan.

About this article

Cite this article

Wang, S., Cheng, Z., Yang, X. et al. Effect of wild type PTEN gene on proliferation and invasion of multiple myeloma. Int J Hematol 92, 83–94 (2010). https://doi.org/10.1007/s12185-010-0604-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0604-y

Keywords

Navigation