Skip to main content

Advertisement

Log in

Molecular monitoring of viral infections after hematopoietic stem cell transplantation

  • Progress in Hematology
  • Infectious complications after hematopoietic stem cell transplantation
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Viral infections are important complications after allogeneic hematopoietic stem cell transplantation. Viral load monitoring combined with preemptive antiviral therapy has become an established strategy for the management of CMV infections. This review discusses and summarizes information regarding viral load monitoring for EBV, human herpesvirus 6, and adenoviruses including virological and clinical aspects. Standardized assays are lacking for these viruses and additional studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Styczynski J, Einsele H, Gil L, Ljungman P. Outcome of treatment of Epstein–Barr virus-related post-transplant lymphoproliferative disorder in hematopoietic stem cell recipients: a comprehensive review of reported cases. Transpl Infect Dis. 2009;11(5):383–92.

    Article  CAS  PubMed  Google Scholar 

  2. Gartner BC, Schafer H, Marggraff K, Eisele G, Schafer M, Roemer K, et al. Evaluation of use of Epstein–Barr viral load in patients after allogeneic stem cell transplantation to diagnose and monitor posttransplant lymphoproliferative disease. J Clin Microbiol. 2002;40(2):351–8.

    Article  PubMed  Google Scholar 

  3. van Esser JW, van der Holt B, Meijer E, Niesters HG, Trenschel R, Thijsen SF, et al. Epstein–Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood. 2001;98(4):972–8.

    Article  PubMed  Google Scholar 

  4. Juvonen E, Aalto SM, Tarkkanen J, Volin L, Mattila PS, Knuutila S, et al. High incidence of PTLD after non-T-cell-depleted allogeneic haematopoietic stem cell transplantation as a consequence of intensive immunosuppressive treatment. Bone Marrow Transpl. 2003;32(1):97–102.

    Article  CAS  Google Scholar 

  5. Kinch A, Oberg G, Arvidson J, Falk KI, Linde A, Pauksens K. Post-transplant lymphoproliferative disease and other Epstein-Barr virus diseases in allogeneic haematopoietic stem cell transplantation after introduction of monitoring of viral load by polymerase chain reaction. Scand J Infect Dis. 2007;39(3):235–44.

    Article  CAS  PubMed  Google Scholar 

  6. Omar H, Hagglund H, Gustafsson-Jernberg A, LeBlanc K, Mattsson J, Remberger M, et al. Targeted monitoring of patients at high risk of post-transplant lymphoproliferative disease by quantitative Epstein–Barr virus polymerase chain reaction. Transpl Infect Dis. 2009;11(5):393–9.

    Article  CAS  PubMed  Google Scholar 

  7. Limaye AP, Huang ML, Atienza EE, Ferrenberg JM, Corey L. Detection of Epstein–Barr virus DNA in sera from transplant recipients with lymphoproliferative disorders. J Clin Microbiol. 1999;37(4):1113–6.

    CAS  PubMed  Google Scholar 

  8. Rowe DT, Webber S, Schauer EM, Reyes J, Green M. Epstein–Barr virus load monitoring: its role in the prevention and management of post-transplant lymphoproliferative disease. Transpl Infect Dis. 2001;3(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  9. Weinstock DM, Ambrossi GG, Brennan C, Kiehn TE, Jakubowski A. Preemptive diagnosis and treatment of Epstein–Barr virus-associated post transplant lymphoproliferative disorder after hematopoietic stem cell transplant: an approach in development. Bone Marrow Transpl. 2006;37(6):539–46.

    Article  CAS  Google Scholar 

  10. Sundin M, Le Blanc K, Ringden O, Barkholt L, Omazic B, Lergin C, et al. The role of HLA mismatch, splenectomy and recipient Epstein-Barr virus seronegativity as risk factors in post-transplant lymphoproliferative disorder following allogeneic hematopoietic stem cell transplantation. Haematologica. 2006;91(8):1059–67.

    PubMed  Google Scholar 

  11. Landgren O, Gilbert ES, Rizzo JD, Socie G, Banks PM, Sobocinski KA, et al. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation. Blood. 2009;113(20):4992–5001.

    Article  CAS  PubMed  Google Scholar 

  12. Brunstein CG, Weisdorf DJ, DeFor T, Barker JN, Tolar J, van Burik JA, et al. Marked increased risk of Epstein–Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood. 2006;108(8):2874–80.

    Article  CAS  PubMed  Google Scholar 

  13. Styczynski J, Reusser P, Einsele H, de la Camara R, Cordonnier C, Ward KN, et al. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the second European conference on infections in leukemia. Bone Marrow Transpl. 2009;43(10):757–70.

    Article  CAS  Google Scholar 

  14. Zaia J, Baden L, Boeckh MJ, Chakrabarti S, Einsele H, Ljungman P, et al. Viral disease prevention after hematopoietic cell transplantation. Bone Marrow Transpl. 2009;44(8):471–82.

    Article  CAS  Google Scholar 

  15. Curtis RE, Travis LB, Rowlings PA, Socie G, Kingma DW, Banks PM, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94(7):2208–16.

    CAS  PubMed  Google Scholar 

  16. Gustafsson A, Levitsky V, Zou JZ, Frisan T, Dalianis T, Ljungman P, et al. Epstein–Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood. 2000;95(3):807–14.

    CAS  PubMed  Google Scholar 

  17. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92(5):1549–55.

    CAS  PubMed  Google Scholar 

  18. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31.

    Article  CAS  PubMed  Google Scholar 

  19. Wang FZ, Linde A, Hagglund H, Testa M, Locasciulli A, Ljungman P. Human herpesvirus 6 DNA in cerebrospinal fluid specimens from allogeneic bone marrow transplant patients: does it have clinical significance? Clin Infect Dis. 1999;28(3):562–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zerr DM, Gooley TA, Yeung L, Huang ML, Carpenter P, Wade JC, et al. Human herpesvirus 6 reactivation and encephalitis in allogeneic bone marrow transplant recipients. Clin Infect Dis. 2001;33(6):763–71.

    Article  CAS  PubMed  Google Scholar 

  21. Seeley WW, Marty FM, Holmes TM, Upchurch K, Soiffer RJ, Antin JH, et al. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology. 2007;69(2):156–65.

    Article  CAS  PubMed  Google Scholar 

  22. Chamberlain MC, Chowdhary S. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology. 2008;70(6):491–2 (author reply 2–3).

    Article  PubMed  Google Scholar 

  23. Carrigan DR, Knox KK. Human herpesvirus 6 (HHV-6) isolation from bone marrow: HHV-6-associated bone marrow suppression in bone marrow transplant patients. Blood. 1994;84(10):3307–10.

    CAS  PubMed  Google Scholar 

  24. Knox KK, Carrigan DR. In vitro suppression of bone marrow progenitor cell differentiation by human herpesvirus 6 infection. J Infect Dis. 1992;165(5):925–9.

    CAS  PubMed  Google Scholar 

  25. Isomura H, Yamada M, Yoshida M, Tanaka H, Kitamura T, Oda M, et al. Suppressive effects of human herpesvirus 6 on in vitro colony formation of hematopoietic progenitor cells. J Med Virol. 1997;52(4):406–12.

    Article  CAS  PubMed  Google Scholar 

  26. Ljungman P, Wang FZ, Clark DA, Emery VC, Remberger M, Ringden O, et al. High levels of human herpesvirus 6 DNA in peripheral blood leucocytes are correlated to platelet engraftment and disease in allogeneic stem cell transplant patients. Br J Haematol. 2000;111(3):774–81.

    Article  CAS  PubMed  Google Scholar 

  27. Yoshikawa T, Ihira M, Ohashi M, Suga S, Asano Y, Miyazaki H, et al. Correlation between HHV-6 infection and skin rash after allogeneic bone marrow transplantation. Bone Marrow Transpl. 2001;28(1):77–81.

    Article  CAS  Google Scholar 

  28. Yoshikawa T, Suga S, Asano Y, Nakashima T, Yazaki T, Sobue R, et al. Human herpesvirus-6 infection in bone marrow transplantation. Blood. 1991;78(5):1381–4.

    CAS  PubMed  Google Scholar 

  29. Luppi M, Barozzi P, Marasca R, Torelli G. Integration of human herpesvirus-6 (HHV-6) genome in chromosome 17 in two lymphoma patients. Leukemia. 1994;8(Suppl 1):S41–5.

    PubMed  Google Scholar 

  30. Clark DA, Nacheva EP, Leong HN, Brazma D, Li YT, Tsao EH, et al. Transmission of integrated human herpesvirus 6 through stem cell transplantation: implications for laboratory diagnosis. J Infect Dis. 2006;193(7):912–6.

    Article  PubMed  Google Scholar 

  31. Ward KN, Leong HN, Nacheva EP, Howard J, Atkinson CE, Davies NW, et al. Human herpesvirus 6 chromosomal integration in immunocompetent patients results in high levels of viral DNA in blood, sera, and hair follicles. J Clin Microbiol. 2006;44(4):1571–4.

    Article  CAS  PubMed  Google Scholar 

  32. Ward KN, Leong HN, Thiruchelvam AD, Atkinson CE, Clark DA. Human herpesvirus 6 DNA levels in cerebrospinal fluid due to primary infection differ from those due to chromosomal viral integration and have implications for diagnosis of encephalitis. J Clin Microbiol. 2007;45(4):1298–304.

    Article  CAS  PubMed  Google Scholar 

  33. Mori T, Tanaka-Taya K, Satoh H, Aisa Y, Yamazaki R, Kato J, et al. Transmission of chromosomally integrated human herpesvirsus 6 (HHV-6) variant A from a parent to children leading to misdiagnosis of active HHV-6 infection. Transpl Infect Dis. 2009;11(6):503–6.

    Article  CAS  PubMed  Google Scholar 

  34. Hubacek P, Virgili A, Ward KN, Pohlreich D, Keslova P, Goldova B, et al. HHV-6 DNA throughout the tissues of two stem cell transplant patients with chromosomally integrated HHV-6 and fatal CMV pneumonitis. Br J Haematol. 2009;145(3):394–8.

    Article  PubMed  Google Scholar 

  35. Imbert-Marcille BM, Tang XW, Lepelletier D, Besse B, Moreau P, Billaudel S, et al. Human herpesvirus 6 infection after autologous or allogeneic stem cell transplantation: a single-center prospective longitudinal study of 92 patients. Clin Infect Dis. 2000;31(4):881–6.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshikawa T, Asano Y, Ihira M, Suzuki K, Ohashi M, Suga S, et al. Human herpesvirus 6 viremia in bone marrow transplant recipients: clinical features and risk factors. J Infect Dis. 2002;185(7):847–53.

    Article  PubMed  Google Scholar 

  37. Zerr DM, Corey L, Kim HW, Huang ML, Nguy L, Boeckh M. Clinical outcomes of human herpesvirus 6 reactivation after hematopoietic stem cell transplantation. Clin Infect Dis. 2005;40(7):932–40.

    Article  PubMed  Google Scholar 

  38. Sashihara J, Tanaka-Taya K, Tanaka S, Amo K, Miyagawa H, Hosoi G, et al. High incidence of human herpesvirus 6 infection with a high viral load in cord blood stem cell transplant recipients. Blood. 2002;100(6):2005–11.

    CAS  PubMed  Google Scholar 

  39. Maeda Y, Teshima T, Yamada M, Harada M. Reactivation of human herpesviruses after allogeneic peripheral blood stem cell transplantation and bone marrow transplantation. Leuk Lymphoma. 2000;39(3–4):229–39.

    CAS  PubMed  Google Scholar 

  40. Wang FZ, Dahl H, Linde A, Brytting M, Ehrnst A, Ljungman P. Lymphotropic herpes viruses in allogeneic bone marrow transplantation. Blood. 1996;88(9):3615–20.

    CAS  PubMed  Google Scholar 

  41. Ljungman P, de la Camara R, Cordonnier C, Einsele H, Engelhard D, Reusser P, et al. Management of CMV, HHV-6, HHV-7 and Kaposi-sarcoma herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT. Bone Marrow Transpl. 2008;42(4):227–40.

    Article  CAS  Google Scholar 

  42. Shields AF, Hackman RC, Fife KH, Corey L, Meyers JD. Adenovirus infections in patients undergoing bone-marrow transplantation. N Engl J Med. 1985;312(9):529–33.

    Article  CAS  PubMed  Google Scholar 

  43. Symeonidis N, Jakubowski A, Pierre-Louis S, Jaffe D, Pamer E, Sepkowitz K, et al. Invasive adenoviral infections in T-cell-depleted allogeneic hematopoietic stem cell transplantation: high mortality in the era of cidofovir. Transpl Infect Dis. 2007;9(2):108–13.

    Article  CAS  PubMed  Google Scholar 

  44. Feuchtinger T, Lang P, Handgretinger R. Adenovirus infection after allogeneic stem cell transplantation. Leuk Lymphoma. 2007;48(2):244–55.

    Article  CAS  PubMed  Google Scholar 

  45. de Mezerville MH, Tellier R, Richardson S, Hebert D, Doyle J, Allen U. Adenoviral infections in pediatric transplant recipients: a hospital-based study. Pediatr Infect Dis J. 2006;25(9):815–8.

    Article  PubMed  Google Scholar 

  46. van Tol MJ, Kroes AC, Schinkel J, Dinkelaar W, Claas EC, Jol-van der Zijde CM, et al. Adenovirus infection in paediatric stem cell transplant recipients: increased risk in young children with a delayed immune recovery. Bone Marrow Transpl. 2005;36(1):39–50.

    Article  Google Scholar 

  47. Lion T, Baumgartinger R, Watzinger F, Matthes-Martin S, Suda M, Preuner S, et al. Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease. Blood. 2003;102(3):1114–20.

    Article  CAS  PubMed  Google Scholar 

  48. Chakrabarti S, Mautner V, Osman H, Collingham KE, Fegan CD, Klapper PE, et al. Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. Blood. 2002;100(5):1619–27.

    Article  CAS  PubMed  Google Scholar 

  49. La Rosa AM, Champlin RE, Mirza N, Gajewski J, Giralt S, Rolston KV, et al. Adenovirus infections in adult recipients of blood and marrow transplants. Clin Infect Dis. 2001;32(6):871–6.

    Article  CAS  PubMed  Google Scholar 

  50. Howard DS, Phillips IG, Reece DE, Munn RK, Henslee-Downey J, Pittard M, et al. Adenovirus infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 1999;29(6):1494–501.

    Article  CAS  PubMed  Google Scholar 

  51. Flomenberg P, Babbitt J, Drobyski WR, Ash RC, Carrigan DR, Sedmak GV, et al. Increasing incidence of adenovirus disease in bone marrow transplant recipients. J Infect Dis. 1994;169(4):775–81.

    CAS  PubMed  Google Scholar 

  52. Ljungman P, Ribaud P, Eyrich M, Matthes-Martin S, Einsele H, Bleakley M, et al. Cidofovir for adenovirus infections after allogeneic hematopoietic stem cell transplantation: a survey by the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transpl. 2003;31(6):481–6.

    Article  CAS  Google Scholar 

  53. Ebner K, Suda M, Watzinger F, Lion T. Molecular detection and quantitative analysis of the entire spectrum of human adenoviruses by a two-reaction real-time PCR assay. J Clin Microbiol. 2005;43(7):3049–53.

    Article  CAS  PubMed  Google Scholar 

  54. Echavarria M, Forman M, van Tol MJ, Vossen JM, Charache P, Kroes AC. Prediction of severe disseminated adenovirus infection by serum PCR. Lancet. 2001;358(9279):384–5.

    Article  CAS  PubMed  Google Scholar 

  55. Heim A, Ebnet C, Harste G, Pring-Akerblom P. Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol. 2003;70(2):228–39.

    Article  CAS  PubMed  Google Scholar 

  56. Suparno C, Milligan DW, Moss PA, Mautner V. Adenovirus infections in stem cell transplant recipients: recent developments in understanding of pathogenesis, diagnosis and management. Leuk Lymphoma. 2004;45(5):873–85.

    Article  PubMed  CAS  Google Scholar 

  57. Erard V, Huang ML, Ferrenberg J, Nguy L, Stevens-Ayers TL, Hackman RC, et al. Quantitative real-time polymerase chain reaction for detection of adenovirus after T cell-replete hematopoietic cell transplantation: viral load as a marker for invasive disease. Clin Infect Dis. 2007;45(8):958–65.

    Article  CAS  PubMed  Google Scholar 

  58. Gustafson I, Lindblom A, Yun Z, Omar H, Engstrom L, Lewensohn-Fuchs I, et al. Quantification of adenovirus DNA in unrelated donor hematopoietic stem cell transplant recipients. J Clin Virol. 2008;43(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  59. Schilham MW, Claas EC, van Zaane W, Heemskerk B, Vossen JM, Lankester AC, et al. High levels of adenovirus DNA in serum correlate with fatal outcome of adenovirus infection in children after allogeneic stem-cell transplantation. Clin Infect Dis. 2002;35(5):526–32.

    Article  PubMed  Google Scholar 

  60. Sivaprakasam P, Carr TF, Coussons M, Khalid T, Bailey AS, Guiver M, et al. Improved outcome from invasive adenovirus infection in pediatric patients after hemopoietic stem cell transplantation using intensive clinical surveillance and early intervention. J Pediatr Hematol Oncol. 2007;29(2):81–5.

    Article  PubMed  Google Scholar 

  61. Lion T, Kosulin K, Landlinger C, Rauch M, Preuner S, Jugovic D, et al. Monitoring of adenovirus load in stool by real-time PCR permits early detection of impending invasive infection in patients after allogeneic stem cell transplantation. Leukemia. 2010 (online publication).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Ljungman.

About this article

Cite this article

Ljungman, P. Molecular monitoring of viral infections after hematopoietic stem cell transplantation. Int J Hematol 91, 596–601 (2010). https://doi.org/10.1007/s12185-010-0570-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0570-4

Keywords

Navigation