Skip to main content

Advertisement

Log in

Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia

  • Progress in Hematology
  • Chromatin regulation in leukemogenesis
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Fusion of the mixed lineage leukemia protein (MLL) to one of over 50 different translocation partners converts it into a potent leukemogenic oncoprotein. The resulting fusion proteins transform primarily through upregulation of A-cluster Hox genes, including Hoxa9 and the Hox cofactor Meis1. Considerable progress has been made in delineating the differences between normal Hox gene regulation by MLL and deregulated transcription in MLL-induced leukemias. Some MLL translocation partners dimerize the truncated MLL molecule. Other translocation partners appear to recruit nuclear coactivator complexes that have diverse enzymatic activities that impinge on transcriptional elongation pathways. These enzymatic activities, including RNA polymerase II phosphorylation as well as histone H3 lysine 79 methylation present attractive targets for the development of future MLL-directed therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xia Z-B, Popovic R, Chen J, et al. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc Natl Acad Sci USA. 2005;102(39):14028–33.

    Article  PubMed  CAS  Google Scholar 

  2. Terranova R, Agherbi H, Boned A, Meresse S, Djabali M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA. 2006;103(17):6629–34.

    Article  PubMed  CAS  Google Scholar 

  3. Dou Y, Milne TA, Tackett AJ, et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell. 2005;121(6):873–85.

    Article  PubMed  CAS  Google Scholar 

  4. Nakamura T, Mori T, Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol cell. 2002;10(5):1119–28.

    Article  PubMed  CAS  Google Scholar 

  5. Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10(5):1107–17.

    Article  PubMed  CAS  Google Scholar 

  6. Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006;75:243–69.

    Article  PubMed  CAS  Google Scholar 

  7. Hsieh JJ, Cheng EH, Korsmeyer SJ. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell. 2003;115(3):293–303.

    Article  PubMed  CAS  Google Scholar 

  8. Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood. 1998;92(1):108–17.

    PubMed  CAS  Google Scholar 

  9. Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol. 2003;23(1):186–94.

    Article  PubMed  CAS  Google Scholar 

  10. Dou Y, Milne TA, Ruthenburg AJ, et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol. 2006;13(8):713–19.

    Article  PubMed  CAS  Google Scholar 

  11. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6(11):838–49.

    Article  PubMed  CAS  Google Scholar 

  12. Wysocka J, Swigut T, Milne TA, et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 2005;121(6):859–72.

    Article  PubMed  CAS  Google Scholar 

  13. Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol. 2001;21(7):2249–58.

    Article  PubMed  CAS  Google Scholar 

  14. Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res. 2002;30(4):958–65.

    Article  PubMed  CAS  Google Scholar 

  15. Ayton PM, Chen EH, Cleary ML. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol. 2004;24(23):10470–8.

    Article  PubMed  CAS  Google Scholar 

  16. Zeleznik-Le NJ, Harden AM, Rowley JD. 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci USA. 1994;91(22):10610–4.

    Article  PubMed  CAS  Google Scholar 

  17. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ. Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 1995;378(6556):505–8.

    Article  PubMed  CAS  Google Scholar 

  18. Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA. 2003;100(14):8342–7.

    Article  PubMed  CAS  Google Scholar 

  19. Li H, Ilin S, Wang W, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF (see comment). Nature. 2006;442(7098):91–5.

    PubMed  CAS  Google Scholar 

  20. Schultz DC, Friedman JR, Rauscher FJ 3rd. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD, bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev. 2001;15(4):428–43.

    Google Scholar 

  21. Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol. 2001;21(10):3589–97.

    Article  PubMed  CAS  Google Scholar 

  22. Filetici PPO, Ballario P. The bromodomain: a chromatin browser? Front Biosci. 2001;6:866–76.

    Article  Google Scholar 

  23. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood. 1997;90(5):1799–1806.

    PubMed  CAS  Google Scholar 

  24. Milne TA, Hughes CM, Lloyd R, et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA. 2005;102(3):749–54.

    Article  PubMed  CAS  Google Scholar 

  25. Takeda S, Chen DY, Westergard TD, et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev. 2006;20(17):2397–2409.

    Article  PubMed  CAS  Google Scholar 

  26. Yamashita M, Hirahara K, Shinnakasu R, et al. Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity. 2006;24(5):611–22.

    Article  PubMed  CAS  Google Scholar 

  27. Guenther MG, Jenner RG, Chevalier B, et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA. 2005;102(24):8603–8.

    Article  PubMed  CAS  Google Scholar 

  28. Milne TA, Dou Y, Martin ME, Brock HW, Roeder RG, Hess JL. MLL associates specifically with a subset of transcriptionally active target genes (see comment). Proc Natl Acad Sci USA. 2005;102(41):14765–70.

    Article  PubMed  CAS  Google Scholar 

  29. Lyko F, Beisel C, Marhold J, Paro R. Epigenetic regulation in Drosophila. Curr Top Microbiol Immunol. 2006;310:23–44.

    PubMed  CAS  Google Scholar 

  30. Hanson RD, Hess JL, Yu BD, et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA. 1999;96(25):14372–7.

    Article  PubMed  CAS  Google Scholar 

  31. Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells (see comment). Cell. 2006;125(2):315–26.

    Article  PubMed  CAS  Google Scholar 

  32. Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell. 2004;6(3):437–43.

    Article  PubMed  CAS  Google Scholar 

  33. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene. 2001;20(40):5695–707.

    Article  PubMed  CAS  Google Scholar 

  34. Hess JL. MLL, a histone methyltransferase disrupted in leukemia. Trends Mol Med. 2004;10:500–7.

    Article  PubMed  CAS  Google Scholar 

  35. Zeisig BB, Milne T, Garcia-Cuellar MP, et al. Hoxa9 and Meis1 Are Key Targets for MLL-ENL-Mediated Cellular Immortalization. Mol Cell Biol. 2004;24(2):617–28.

    Article  PubMed  CAS  Google Scholar 

  36. Magli MC, Largman C, Lawrence HJ. Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol. 1997;173(2):168–77.

    Article  PubMed  CAS  Google Scholar 

  37. Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells. 1996;14(3):281–91.

    Article  PubMed  CAS  Google Scholar 

  38. Pineault N, Helgason CD, Lawrence HJ, Humphries RK. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol. 2002;30(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  39. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  40. Rozovskaia T, Feinstein E, Mor O, et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4:11) abnormality. Oncogene. 2001;20(7):874–8.

    Article  PubMed  CAS  Google Scholar 

  41. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133–43.

    Article  PubMed  CAS  Google Scholar 

  42. Nakamura T, Largaespada DA, Shaughnessy JD Jr, Jenkins NA, Copeland NG. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet. 1996;12(2):149–53.

    Article  PubMed  CAS  Google Scholar 

  43. Moskow JJ, Bullrich F, Huebner K, Daar IO, Buchberg AM. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol. 1995;15(10):5434–43.

    PubMed  CAS  Google Scholar 

  44. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. Embo J. 1998;17(13):3714–25.

    Article  PubMed  CAS  Google Scholar 

  45. Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 2003;17(18):2298–307.

    Article  PubMed  CAS  Google Scholar 

  46. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7.

    Article  PubMed  CAS  Google Scholar 

  47. Quentmeier H, Dirks WG, Macleod RA, Reinhardt J, Zaborski M, Drexler HG. Expression of HOX genes in acute leukemia cell lines with and without MLL translocations. Leuk Lymphoma. 2004;45(3):567–74.

    Article  PubMed  CAS  Google Scholar 

  48. Dik WA, Brahim W, Braun C, et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia. 2005;19(11):1948–57.

    Article  PubMed  CAS  Google Scholar 

  49. Dorsam ST, Ferrell CM, Dorsam GP, et al. The transcriptome of the leukemogenic homeoprotein HOXA9 in human hematopoietic cells. Blood. 2004;103(5):1676–84.

    Article  PubMed  CAS  Google Scholar 

  50. Calvo KR, Sykes DB, Pasillas MP, Kamps MP. Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meis1. Oncogene. 2002;21(27):4247–56.

    Article  PubMed  CAS  Google Scholar 

  51. Tedeschi FA, Zalazar FE. HOXA9 gene expression in the chronic myeloid leukemia progression. Leuk Res. 2006; (in press, corrected proof).

  52. Slany RK, Lavau C, Cleary ML. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol. 1998;18(1):122–9.

    PubMed  CAS  Google Scholar 

  53. Zeisig DT, Bittner CB, Zeisig BB, Garcia-Cuellar M-P, Hess JL, Slany RK. The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene. 2005;24(35):5525–32.

    Article  PubMed  CAS  Google Scholar 

  54. Erfurth F, Hemenway CS, De Erkenez AC, Domer PH. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia. 2004;18(1):92–102.

    Article  PubMed  CAS  Google Scholar 

  55. Srinivasan RS, Nesbit JB, Marrero L, Erfurth F, LaRussa VF, Hemenway CS. The synthetic peptide PFWT disrupts AF4-AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia. 2004;18(8):1364–72.

    Article  PubMed  CAS  Google Scholar 

  56. Bitoun E, Oliver PL, Davies KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet. 2007;16(1):92–106.

    Article  PubMed  CAS  Google Scholar 

  57. Estable MC, Naghavi MH, Kato H, et al. MCEF, the newest member of the AF4 family of transcription factors involved in leukemia, is a positive transcription elongation factor-b-associated protein. J Biomed Sci. 2002;9(3):234–45.

    Article  PubMed  CAS  Google Scholar 

  58. Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW. An RNA polymerase II elongation factor encoded by the human ELL gene. Science. 1996;271(5257):1873–6.

    Article  PubMed  CAS  Google Scholar 

  59. Debernardi S, Bassini A, Jones LK, et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood. 2002;99(1):275–81.

    Article  PubMed  Google Scholar 

  60. Okada, Y, Feng, Q, Lin, Y, et al., hDOT1L links histone methylation to leukemogenesis [erratum appears in Cell 2005;3:121(5):809]. Cell 2005;121(2):167–78.

    Google Scholar 

  61. Lavau C, Du C. Thirman M, Zeleznik-Le N. Chromatin-related properties of CBP fused to MLL generated a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J. 2000;19:4655–64.

    Article  PubMed  CAS  Google Scholar 

  62. So CW, Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood. 2003;101(2):633–9.

    Article  PubMed  CAS  Google Scholar 

  63. So CW, Cleary ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol. 2002;22(18):6542–52.

    Article  PubMed  CAS  Google Scholar 

  64. Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404(6779):782–7.

    Article  PubMed  CAS  Google Scholar 

  65. DiMartino J, Miller T, Ayton PM, Landewe T, Hess JL, Cleary ML, Shilatifard A. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood.;2000 (in press).

  66. Kong SE, Banks CAS, Shilatifard A, Conaway JW, Conaway RC. ELL-associated factors 1 and 2 are positive regulators of RNA polymerase II elongation factor ELL. Proc Natl Acad Sci USA. 2005;102(29):10094–8.

    Article  PubMed  CAS  Google Scholar 

  67. Luo RT, Lavau C, Du C, et al. The elongation domain of ELL is dispensable but its ELL-associated factor 1 interaction domain is essential for MLL-ELL-induced leukemogenesis. Mol Cell Biol. 2001;21(16):5678–87.

    Article  PubMed  CAS  Google Scholar 

  68. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J. 2000;19(5):843–51.

    Article  PubMed  CAS  Google Scholar 

  69. Martin ME, Milne TA, Bloyer S, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell. 2003;4(3):197–207.

    Article  PubMed  CAS  Google Scholar 

  70. So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell. 2003;4(2):99–110.

    Article  PubMed  CAS  Google Scholar 

  71. Ono R, Nakajima H, Ozaki K, et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest. 2005;115(4):919–29.

    Article  PubMed  CAS  Google Scholar 

  72. Basecke J, Whelan JT, Griesinger F, Bertrand FE. The MLL partial tandem duplication in acute myeloid leukaemia. Br J Haematol. 2006;135(4):438–49.

    Article  PubMed  Google Scholar 

  73. Schichman SA, Caligiuri MA, Strout MP, et al. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res. 1994;54(16):4277–80.

    PubMed  CAS  Google Scholar 

  74. Poppe B, Vandesompele J, Schoch C, et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood. 2004;103(1):229–35.

    Article  PubMed  CAS  Google Scholar 

  75. Steudel C, Wermke M, Schaich M, et al. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer. 2003;37(3):237–51.

    Article  PubMed  CAS  Google Scholar 

  76. Dorrance AM, Liu S, Yuan W, et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest. 2006;116(10):2707–16.

    Article  PubMed  CAS  Google Scholar 

  77. Libura M, Asnafi V, Tu A, et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood. 2003;102(6):2198–204.

    Article  PubMed  CAS  Google Scholar 

  78. Ross ME, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood. 2004;104(12):3679–87.

    Article  PubMed  CAS  Google Scholar 

  79. Herry A, Douet-Guilbert N, Gueganic N, et al. Del(5q) and MLL amplification in homogeneously staining region in acute myeloblastic leukemia: a recurrent cytogenetic association. Ann Hematol. 2006;85(4):244–9.

    Article  PubMed  Google Scholar 

  80. Agarwal SK, Lee Burns A, Sukhodolets KE, et al. Molecular pathology of the MEN1 gene. Ann N Y Acad Sci. 2004;1014:189–98.

    Article  PubMed  CAS  Google Scholar 

  81. Yokoyama A, Wang Z, Wysocka J, et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol. 2004;24(13):5639–49.

    Article  PubMed  CAS  Google Scholar 

  82. Yokoyama A, Somervaille TCP, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123(2):207–18.

    Article  PubMed  CAS  Google Scholar 

  83. Caslini C, YZ Milne TA, Slany RK, Hess JL. Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res. 2007;(in press).

  84. Ayton PM, Chen EH, Cleary ML. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol. 2004;24(23):10470–8.

    Article  PubMed  CAS  Google Scholar 

  85. Birke M, Schreiner S, Garcia-Cuellar M-P, Mahr K, Titgemeyer F, Slany RK. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res. 2002;30(4):958–65.

    Article  PubMed  CAS  Google Scholar 

  86. Allen MD, Grummitt CG, Hilcenko C, et al. Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J. 2006;25(19):4503–12.

    Article  PubMed  CAS  Google Scholar 

  87. Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24(11):1770–83.

    Article  PubMed  CAS  Google Scholar 

  88. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y. Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L [erratum appears in Nat Cell Biol. 2006;8(10):1178]. Nat Cell Biol. 2006;8(9):1017–24.

    Google Scholar 

  89. Hess JL, Bittner CB, Zeisig DT, et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood. 2006;108(1):297–304.

    Article  PubMed  CAS  Google Scholar 

  90. Hu Y-L, Passegue E, Fong S, Largman C, Lawrence HJ. Evidence that the Pim1 kinase gene is a direct target of HOXA9. Blood. 2007;109(11):4732–8.

    Article  PubMed  CAS  Google Scholar 

  91. Brown P, Small D. FLT3 inhibitors: a paradigm for the development of targeted therapeutics for paediatric cancer. Eur J Cancer. 2004;40(5):707–21.

    Article  PubMed  CAS  Google Scholar 

  92. Sternberg DW, Licht JD. Therapeutic intervention in leukemias that express the activated fms-like tyrosine kinase 3 (FLT3): opportunities and challenges. Curr Opin Hematol. 2005;12(1):7–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jay Hess is supported in part through funding from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay L. Hess.

About this article

Cite this article

Dou, Y., Hess, J.L. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int J Hematol 87, 10–18 (2008). https://doi.org/10.1007/s12185-007-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-007-0009-8

Keywords

Navigation