Skip to main content

Advertisement

Log in

Normal muscle structure, growth, development, and regeneration

  • Muscle Injuries (SJ McNeill Ingham, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Knowledge about biochemical, structural and physiological aspects, and properties regarding the skeletal muscle has been widely obtained in the last decades. Muscle disorders, mainly represented in neuromuscular clinical practice by acquired and hereditary myopathies, are well-recognized and frequently diagnosed in practice. Most clinical complaints and biochemical characterizations of each myopathy depends on the appropriate knowledge and interpretation of pathological findings and their comparison with normal muscle findings. Great improvement has been obtained in the last decades mainly involving the mechanisms of normal muscle architecture and physiological function in the healthy individuals. Genetic mechanisms have also been widely studied. We provide an extensive literature review involving current knowledge regarding muscle cell structure and function and embryological and regenerative processes linked to muscle lesion. An updated comprehensive description involving the main nuclear genomic regulatory mechanisms of muscle regeneration and embryogenesis is provided in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McNally EM, Pytel P. Muscle diseases: the muscular dystrophies. Annu Rev Pathol. 2007;2:87–109.

    Article  CAS  PubMed  Google Scholar 

  2. Reed UC. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. Arq Neuropsiquiatr. 2009;67(2A):343–62.

    Article  PubMed  Google Scholar 

  3. Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc. 2011;86(3):564–600.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kaplan JC, Hamroun D. The 2015 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2014;24(12):1123–53.

  5. Cotta A, Carvalho E, Cunha-Júnior AL, Paim JF, Navarro MM, Valicek J, et al. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? Arq Neuropsiquiatr. 2014;72(9):721–34.

  6. Merrison AFA, Hanna MG. The bare essentials: muscle disease. Pract Neurol. 2009;9(1):54–65.

  7. Tobon A. Metabolic myopathies. Continuum (Minneap Minn). 2013;19(6):1571–97.

  8. Iannaccone ST, Castro D. Congenital muscular dystrophies and congenital myopathies. Continuum (Minneap Minn). 2013;19(6):1509–34.

  9. Wicklund MP. The muscular dystrophies. Continuum (Minneap Minn). 2013;19(6):1535–70.

    Google Scholar 

  10. Taivassalo T, Reddy H, Matthews PM. Muscle responses to exercise in health and disease. Neurol Clin. 2000;18(1):15–34.

    Article  CAS  PubMed  Google Scholar 

  11. Favier FB, Benoit H, Freyssenet D. Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch. 2008;456(3):587–600.

    Article  CAS  PubMed  Google Scholar 

  12. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000;80(2):853–924.

    CAS  PubMed  Google Scholar 

  13. Devries MC, Tarnopolsky MA. Muscle physiology in healthy men and women and those with metabolic myopathies. Neurol Clin. 2008;26(1):115–48.

    Article  PubMed  Google Scholar 

  14. Carmignac V, Durbeej M. Cell-matrix interactions in muscle disease. J Pathol. 2012;226(2):200–18.

    Article  CAS  PubMed  Google Scholar 

  15. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Statland JM, Barohn RJ. Muscle channelopathies: the nondystrophic myotonias and periodic paralyses. Continuum (Minneap Minn). 2013;19(6):1598–614.

    Google Scholar 

  17. Kang JS, Krauss RS. Muscle stem cells in development and regenerative myogenesis. Curr Opin Clin Nutr Metab Care. 2010;13(3):243–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, et al. The formation of skeletal muscle: from somite to limb. J Anat. 2003;202(1):59–68.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Russell AP. The molecular regulation of skeletal muscle mass. Proc Aust Physiol Soc. 2009;40:85–93.

    Google Scholar 

  20. Wu W, Huang R, Wu Q, Li P, Chen J, Li B, et al. The role of Six1 in the genesis of muscle cell and skeletal muscle development. Int J Biol Sci. 2014;10(9):983–9.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Birbrair A, Zhang T, Wang Z-M, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci. 2014;6:245.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Norrby M, Tagerud S. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) in skeletal muscle atrophy and hypertrophy. J Cell Physiol. 2010;223(1):194–201.

    CAS  PubMed  Google Scholar 

  23. Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49(1):59–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 2008;23:160–70.

    Article  CAS  Google Scholar 

  25. Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 2013;43(1):12–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gupta VA, Beggs AH. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle. 2014;4:11.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Shadrach JL, Wagers AJ. Stem cells for skeletal muscle repair. Philos Trans R Soc B. 2011;366:2297–306.

    Article  CAS  Google Scholar 

  28. Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci. 2015.

  29. Motohashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol. 2014;2(1): 00001.

  30. Scharner J, Zammit PS. The muscle satellite cell at 50: the formative years. Skelet Muscle. 2011;1(1):28.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci. 2014;6:246.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wang YX, Dumont NA, Rudnicki MA. Muscle stem cells at a glance. J Cell Sci. 2014;127(21):4543–8.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ma G, Wang Y, Li Y, Cui L, Zhao Y, Zhao B, et al. MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci. 2015;11(3):345–52.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Wladimir Bocca Vieira de Rezende Pinto, Paulo Victor Sgobbi de Souza, and Acary Souza Bulle Oliveira declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladimir Bocca Vieira de Rezende Pinto.

Additional information

This article is part of the Topical Collection on Muscle Injuries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Rezende Pinto, W.B.V., de Souza, P.V.S. & Oliveira, A.S.B. Normal muscle structure, growth, development, and regeneration. Curr Rev Musculoskelet Med 8, 176–181 (2015). https://doi.org/10.1007/s12178-015-9267-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-015-9267-x

Keywords

Navigation