Skip to main content

Advertisement

Log in

The genetic architecture of blood pressure variation

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

High blood pressure affects over 1 billion people worldwide and is responsible for 50% of all cardio vascular deaths. Despite numerous candidate gene and linkage studies, no susceptibility loci for hypertension have been robustly validated except for rare monogenic disorders. Recent large meta-analyses of genome-wide association scans, however, have changed the situation. Thirteen new hypertension loci have now been described, many of which have strong biological candidates. All associated variants have common allele frequencies and exert modest to small effects on disease risk. Rare and low frequency variants with larger effect sizes in genes causing monogenic disorders have also been found, suggesting blood pressure heritability may be explained in part by a combination of both common and rare genetic variants. It is hoped these new findings will pave the way for a better understanding of blood pressure regulation and offer the potential to develop new treatments that may prevent heart disease and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Murray C, Lopez A, Rodgers A, Vaughan P: Reducing risks, promoting healthy life. In World Health Organisation Report 2002. Edited by Murray CA. Geneva: World Health Organisation; 2002:58–60.

    Google Scholar 

  2. Lewington S, Clarke R, Qizilbash N, et al.: Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360:1903–1913.

    Article  PubMed  Google Scholar 

  3. Petersen S, Rayner M, Leal J, et al.: European Cardiovascular Disease Statistics. London: British Heart Foundation; 2005.

    Google Scholar 

  4. Arnett DK, Baird AE, Barkley RA, et al.: Relevance of genetics and genomics for prevention and treatment of cardiovascular disease: a scientific statement from the American Heart Association Council on Epidemiology and Prevention, the Stroke Council, and the Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 2007, 115:2878–2901.

    Article  PubMed  Google Scholar 

  5. Chiong JR: Controlling hypertension from a public health perspective. Int J Cardiol 2008, 127:151–156.

    Article  PubMed  Google Scholar 

  6. Havlik RJ, Garrison RJ, Feinleib M, et al.: Blood pressure aggregation in families. Am J Epidemiol 1979, 110:304–312.

    PubMed  CAS  Google Scholar 

  7. Tobin M, Sheehan N, Samani N, Burton P: The genetic epidemiology of hypertension. In Genetics of Hypertension, volume 24. Edited by Birkenhager WH, Reid J. Amsterdam: Elsevier; 2007:5–28.

    Google Scholar 

  8. Caulfield M, Munroe P, Pembroke J, et al.: Genome-wide mapping of human loci for essential hypertension. Lancet 2003, 361:2118–2123.

    Article  PubMed  CAS  Google Scholar 

  9. Wu X, Kan D, Province M, et al.: An updated meta-analysis of genome scans for hypertension and blood pressure in the NHLBI Family Blood Pressure Program (FBPP). Am J Hypertens 2006, 19:122–127.

    Article  PubMed  Google Scholar 

  10. Wallace C, Xue M, Caulfield M, Munroe PB: Genetics of hypertension, volume 24. In Handbook of Hypertension. Edited by Birkenhager WH, Reid JL. Amsterdam: Elsevier; 2007.

    Google Scholar 

  11. Lifton RP, Gharavi AG, Geller DS: Molecular mechanisms of human hypertension. Cell 2001, 104:545–556.

    Article  PubMed  CAS  Google Scholar 

  12. Mein CA, Caulfield MJ, Dobson RJ, Munroe PB: Genetics of essential hypertension. Hum Mol Genet 2004, 13(Spec No 1):R169–175.

    Article  PubMed  CAS  Google Scholar 

  13. Consortium TIH: The International HapMap Project. Nature 2003, 426:789–796.

    Article  CAS  Google Scholar 

  14. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273:1516–1517.

    Article  PubMed  CAS  Google Scholar 

  15. Consortium WTCC: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.

    Article  CAS  Google Scholar 

  16. Newhouse SJ, Wallace C, Dobson R, et al.: Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the British Genetics of Hypertension study. Hum Mol Genet 2005, 14:1805–1814.

    Article  PubMed  CAS  Google Scholar 

  17. Tobin MD, Raleigh SM, Newhouse S, et al.: Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation 2005, 112:3423–3429.

    Article  PubMed  CAS  Google Scholar 

  18. Ehret GB, Morrison AC, O’Connor AA, et al.: Replication of the Wellcome Trust genome-wide association study of essential hypertension: the Family Blood Pressure Program. Eur J Hum Genet 2008, 16:1507–1511.

    Article  PubMed  CAS  Google Scholar 

  19. Levy D, Larson MG, Benjamin EJ, et al.: Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 2007, 8(Suppl 1):S3.

    Article  PubMed  CAS  Google Scholar 

  20. Saxena R, Voight BF, Lyssenko V, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.

    Article  PubMed  CAS  Google Scholar 

  21. Kato N, Miyata T, Tabara Y, et al.: High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum Mol Genet 2008, 17:617–627.

    Article  PubMed  CAS  Google Scholar 

  22. Org E, Eyheramendy S, Juhanson P, et al.: Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet 2009, 18:2288–2296.

    Article  PubMed  CAS  Google Scholar 

  23. Sabatti C, Service SK, Hartikainen AL, et al.: Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 2009, 41:35–46.

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, O’Connell JR, McArdle PF, et al.: From the cover: whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A 2009, 106:226–231.

    Article  PubMed  Google Scholar 

  25. Adeyemo A, Gerry N, Chen G, et al.: A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet 2009, 5:e1000564.

    Article  PubMed  CAS  Google Scholar 

  26. Cho YS, Go MJ, Kim YJ, et al.: A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009, 41:527–534.

    Article  PubMed  CAS  Google Scholar 

  27. Pande J, Mallhi KK, Sawh A, et al.: Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am J Physiol Cell Physiol 2006, 290:C1341–C1349.

    Article  PubMed  CAS  Google Scholar 

  28. Levy D, Ehret GB, Rice K, et al.: Genome-wide association study of blood pressure and hypertension. Nat Genet 2009, 41:677–687.

    Article  CAS  Google Scholar 

  29. Newton-Cheh C, Johnson T, Gateva V, et al.: Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009, 41:666–676.

    Article  CAS  Google Scholar 

  30. Zeggini E, Scott LJ, Saxena R, et al.: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008, 40:638–645.

    Article  PubMed  CAS  Google Scholar 

  31. Kathiresan S, Melander O, Guiducci C, et al.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189–197.

    Article  PubMed  CAS  Google Scholar 

  32. Newton-Cheh C, Larson MG, Vasan RS, et al.: Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet 2009, 41:348–353.

    Article  PubMed  CAS  Google Scholar 

  33. Qian X, Lu Z, Tan M, et al.: A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur J Hum Genet 2007, 15:1239–1245.

    Article  PubMed  CAS  Google Scholar 

  34. Sahakitrungruang T, Tee MK, Speiser PW, Miller WL: Novel P450c17 mutation H373D causing combined 17{alpha}-hydroxylase/17,20-lyase deficiency. J Clin Endocrinol Metab 2009 (in press).

  35. Maher B: Personal genomes: the case of the missing heritability. Nature 2008, 456:18–21.

    Article  PubMed  CAS  Google Scholar 

  36. McCarthy MI: Exploring the unknown: assumptions about allelic architecture and strategies for susceptibility variant discovery. Genome Med 2009, 1:66.

    Article  PubMed  CAS  Google Scholar 

  37. Ji W, Foo JN, O’Roak BJ, et al.: Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 2008, 40:592–599.

    Article  PubMed  CAS  Google Scholar 

  38. Tobin MD, Tomaszewski M, Braund PS, et al.: Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension 2008, 51:1658–1664.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson FH, Disse-Nicodeme S, Choate KA, et al.: Human hypertension caused by mutations in WNK kinases. Science 2001, 293:1107–1112.

    Article  PubMed  CAS  Google Scholar 

  40. Tobin MD, Timpson NJ, Wain LV, et al.: Common variation in the WNK1 gene and blood pressure in childhood: the Avon Longitudinal Study of Parents and Children. Hypertension 2008, 52:974–979.

    Article  PubMed  CAS  Google Scholar 

  41. Newhouse S, Farrall M, Wallace C, et al.: Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion. PLoS One 2009, 4:e5003.

    Article  PubMed  CAS  Google Scholar 

  42. Estivill X, Armengol L: Copy number variants and common disorders: filling the gaps and exploring complexity in genomewide association studies. PLoS Genet 2007, 3:1787–1799.

    Article  PubMed  CAS  Google Scholar 

  43. McCarroll SA: Copy-number analysis goes more than skin deep. Nat Genet 2008, 40:5–6.

    Article  PubMed  CAS  Google Scholar 

  44. Eichler EE, Nickerson DA, Altshuler D, et al.: Completing the map of human genetic variation. Nature 2007, 447:161–165.

    Article  PubMed  CAS  Google Scholar 

  45. Redon R, Ishikawa S, Fitch KR, et al.: Global variation in copy number in the human genome. Nature 2006, 444:444–454.

    Article  PubMed  CAS  Google Scholar 

  46. Loos RJ, Lindgren CM, Li S, et al.: Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 2008, 40:768–775.

    Article  PubMed  CAS  Google Scholar 

  47. National Institutes of Health: The 1000 Genomes Project: 1000 genomes-a deep catalog of human genetic variation. Available at http://www.genome.gov/Pages/About/OD/ReportsPublications/June2008_FelsenfeldHoL.pdf. Accessed July 11, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia B. Munroe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munroe, P.B., Johnson, T. & Caulfield, M.J. The genetic architecture of blood pressure variation. Curr Cardio Risk Rep 3, 418–425 (2009). https://doi.org/10.1007/s12170-009-0062-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-009-0062-3

Keywords

Navigation