Skip to main content
Log in

Direct Determination of Trace Elements in Meat Samples via High-Resolution Graphite Furnace Atomic Absorption Spectrometry

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This work presents a direct and straightforward approach for the determination of trace elements in fish muscle, oyster, and bovine liver via direct solid sample analysis (SS) using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). The preliminary studies revealed the presence of spectral interferences at the analytical line of Ni at 231.096 nm, which could be corrected subtracting the spectrum of SiO and PO from the sample spectra using least-squares background correction. Moreover, all meat samples were proven homogeneous according to the homogeneity factor (H e) (all values were <10 mg½). Pyrolysis (Tp) and atomization (Ta) temperatures were studied and optimized as 800 °C (Tp) and 2500 °C (Ta) for Mn, 700 °C (Tp) and 2600 °C (Ta) for Ni, and 600 °C (Tp) and 2500 °C (Ta) for Rb. Calibration against aqueous standards was proven feasible for Mn determination, whereas Ni and Rb required calibration against solid standards for their quantification. The detection limits achieved were demonstrated adequate for application to food analysis (0.005 μg g−1 for Mn, 0.002 μg g−1 for Ni, and 0.1 μg g−1 for Rb). The developed method was successfully applied for the elemental analysis of fish muscle, oyster, and bovine liver and three certified reference materials, demonstrating good agreement with the certified values and with the reference technique at a 95 % statistical confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (2016) ATSDR toxic substances portal. http://www.atsdr.cdc.gov/substances/index.aspcc. Accessed 4 May 2016

  • Al-Amer S, Bekhit AEA, Gooneratne R, Mason SL (2016) Nutritional composition of mutton bird (Puffinus griseus) meat. J Food Compos Anal 46:22–28. doi:10.1016/j.jfca.2015.10.006

    Article  CAS  Google Scholar 

  • Almeida TS, de Andrade RM, de Gois JS, Borges DLG (2013) Development of a simple and fast ultrasound-assisted extraction method for trace element determination in tobacco samples using ICP-MS. Int J Environ Anal Chem 94:756–764. doi:10.1080/03067319.2014.891107

    Article  Google Scholar 

  • Currie LA (1999) Detection and quantification limits: origins and historical overview. Anal Chim Acta 391:127–134

    Article  CAS  Google Scholar 

  • de Gois JS, Pereira ER, Welz B, Borges DLG (2015) Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta, Part B 105:12–17. doi:10.1016/j.sab.2014.09.005

    Article  Google Scholar 

  • de Gois JS, Almeida TS, de Andrade RM, Toaldo IM, Bordignon-Luiz MT, Borges DLG (2016) Direct solid analysis for the determination of Mn, Ni, Rb and Sr in powdered stimulant plants using high-resolution continuum source atomic absorption spectrometry followed by chemometric classification based on elemental composition, polyphenol content and antioxidant activity. Microchem J 124:283–289. doi:10.1016/j.microc.2015.08.020

    Article  Google Scholar 

  • Flores EMM, Barin JS, Mesko MF, Knapp G (2007) Sample preparation techniques based on combustion reactions in closed vessels—a brief overview and recent applications. Spectrochim Acta, Part B 62:1051–1064. doi:10.1016/j.sab.2007.04.018

    Article  Google Scholar 

  • Hondrogiannis E, Peterson K, Zapf CM, Roy W, Blackney B, Dailey K (2012) The use of wavelength dispersive X-ray fluorescence and discriminant analysis in the identification of the elemental composition of cumin samples and the determination of the country of origin. Food Chem 135:2825–2831. doi:10.1016/j.foodchem.2012.07.003

    Article  CAS  Google Scholar 

  • Horstkotte B, Jarošová P, Chocholouš P, Sklenářová H, Solich P (2015) Sequential injection chromatography with post-column reaction/derivatization for the determination of transition metal cations in natural water samples. Talanta 136:75–83. doi:10.1016/j.talanta.2015.01.001

    Article  CAS  Google Scholar 

  • Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Kordjazy M, Sharifzadeh M, Dehpour AR (2015) Elevated level of nitric oxide mediates the anti-depressant effect of rubidium chloride in mice. Eur J Pharmacol 763:411–418. doi:10.1016/j.ejphar.2015.06.030

    Article  Google Scholar 

  • Kulkarni SD, Acharya R, Nair AGC, Rajurkar NS, Reddy AVR (2006) Determination of elemental concentration profiles in tender wheatgrass (Triticum aestivum L.) using instrumental neutron activation analysis. Food Chem 95:699–707. doi:10.1016/j.foodchem.2005.04.006

    Article  CAS  Google Scholar 

  • Kurfürst U (1987) Instrumental requirements, analytical performance and characteristics for the analysis of solid samples by GF AAS. Fresenius Zeitschrift Fur Analytische Chemie 328:316–318

    Article  Google Scholar 

  • Kurfürst, U (1998) Solid sample analysis: direct and slurry sampling using GF AAS and ETV-ICP. Ed Springer, Berlin.

  • Nóbrega JA, Santos MC, de Sousa RA, Cadore S, Barnes RM, Tatro M (2006) Sample preparation in alkaline media. Spectrochim Acta, Part B 6:465–495. doi:10.1016/j.sab.2006.02.006

    Article  Google Scholar 

  • Patole SP, Simões F, Yapici TF, Warsama BH, Anjum DH, Cost PMFJ (2016) An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry. Talanta 148:94–100. doi:10.1016/j.talanta.2015.10.053

    Article  CAS  Google Scholar 

  • Plantikow-Voβgätter DE (1996) Application of an ETV-ICP system for the determination of elements in human hair. Spectrochim Acta, Part B 51:261–270. doi:10.1016/0584-8547(95)01412-8

    Article  Google Scholar 

  • Pozebon D, Scheffler GL, Dressler VL, Nunes MAG (2014) Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J Anal At Spectrom 29:2204–2228. doi:10.1039/C4JA00250D

    Article  CAS  Google Scholar 

  • Sáiz J, Koenka IJ, Mai TD, Hauser PC, García-Ruiz C (2014) Simultaneous separation of cations and anions in capillary electrophoresis. TrAC. Trends Anal Chem 62:162–172. doi:10.1016/j.trac.2014.07.015

    Article  Google Scholar 

  • Uchida S, Tagami K, Tabei K (2005) Comparison of alkaline fusion and acid digestion methods for the determination of rhenium in rock and soil samples by ICP-MS. Anal Chim Acta 535:317–323. doi:10.1016/j.aca.2004.11.065

    Article  CAS  Google Scholar 

  • Welz B, Sperling M (1999) Atomic absorption spectrometry, 3rd edn. Weinheim, Wiley-Vch

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson S. de Gois.

Ethics declarations

Funding

This study was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (140,418/2012–1).

Conflict of Interest

Jefferson S. de Gois declares that he has no conflict of interest. Rodolpho M. de Andrade declares that he has no conflict of interest. Isabela Maia Toaldo declares that she has no conflict of interest. Diego Barros Batista declares that he has no conflict of interest. Aderval S. Luna declares that he has no conflict of interest. Daniel L. G. Borges declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, R.M., de Gois, J.S., Toaldo, I.M. et al. Direct Determination of Trace Elements in Meat Samples via High-Resolution Graphite Furnace Atomic Absorption Spectrometry. Food Anal. Methods 10, 1209–1215 (2017). https://doi.org/10.1007/s12161-016-0659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0659-3

Keywords

Navigation