Skip to main content
Log in

A Food-Grade Approach to Isolate Crocetin from Saffron (Crocus sativus L.) Extracts

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The present study proposes a food-grade approach for the isolation of the valuable apocarotenoid crocetin (CRT) from saffron extracts rich in crocetin esters. Its isolation involved optimization of saffron:solvent ratio (w/v) using response surface methodology (RSM) and encapsulation in deoxycholic acid (DCA) to form an inclusion complex (CRT-DCA). RP-HPLC-DAD was the major tool to monitor the effectiveness of the extraction process. The optimum ratio found (1:180 w/v) spares the precious starting material (yield 62.7 ± 2.5 g dry extract/100 g dry stigmas, CRT purity 98 %) and reduces the cost of the process. The successful formation of the complex was confirmed by an array of techniques such as Fourier transform-infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and wide angle X-ray diffraction (WAXD). Encapsulation efficiency (%) measured directly and indirectly was found to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CRT:

Crocetin

CCD:

Central composite design

DCA:

Deoxycholic acid

RSM:

Response surface methodology

RP-HPLC-DAD:

Reversed phase-high performance liquid chromatography-diode array detection

NMR:

Nuclear magnetic resonance

FT-IR:

Fourier transform-infrared spectroscopy

KBr:

Potassium bromide

TGA:

Thermogravimetric analysis

SEM:

Scanning electron microscopy

WAXD:

Wide angle X-ray diffractometry

References

  • Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, Islam F (2005) Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 81:805–813

    Article  CAS  Google Scholar 

  • Aigner Z, Berkesi O, Farkas G, Szabo-Revesz P (2012) DSC, X-Ray and FT-IR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding. J Pharm Biomed Anal 57:62–67

    Article  CAS  Google Scholar 

  • Asai A, Nakano T, Takahashi M, Nagao A (2005) Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem 53:7302–7306

    Article  CAS  Google Scholar 

  • Bortolini O, Fantin G, Fogagnolo M (2005) Bile acid derivatives as enantiodifferentiating host molecules in inclusion processes. Chirality 17:121–130

    Article  CAS  Google Scholar 

  • Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979

    Article  CAS  Google Scholar 

  • Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P (2007) Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res 27:357–362

    CAS  Google Scholar 

  • Chryssanthi DG, Dedes PG, Karamanos NK, Cordopatis P, Lamari FN (2011) Crocetin inhibits invasiveness of MDA-MB-231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Med 77:146–151

    Article  CAS  Google Scholar 

  • Cormier F, Dufresne C, Dorion S (1995) Enhanced crocetin glucosylation by means of maltosyl-β-cyclodextrin encapsulation. Biotechnol Tech 9:553–556

    Article  CAS  Google Scholar 

  • Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Dry Technol 23:1361–1394

    Article  CAS  Google Scholar 

  • Fantin G, Fogagnolo M, Medici A, Perrone D (2007) Isolation of lycopene from crude tomato extract via selective inclusion in deoxycholic acid. Tetrahedron Lett 48:9148–9150

    Article  CAS  Google Scholar 

  • Fantin G, Fogagnolo M, Maietti S, Rossetti S (2010) Selective removal of monoterpenes from bergamot oil by inclusion in deoxycholic acid. J Agric Food Chem 58:5438–5443

    Article  CAS  Google Scholar 

  • Fogagnolo M, Fantin G, Bortolini O (2007) Inclusion compounds of dehydrocholic acid with solvents. Int J Mol Sci 8:662–669

    Article  CAS  Google Scholar 

  • Francescutto A, Ciuti P, Iernetti G, Dezhkunov NV (1999) Clarification of the cavitation zone by pulse modulation of the ultrasound field. Europhys Lett 47:49–55

    Article  CAS  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–404

    Article  CAS  Google Scholar 

  • ISO 3632-2 (2010) Saffron (Crocus sativus Linneaus). Part 2: test methods. International Organization for Standardization, Geneva

    Google Scholar 

  • Karrer P, Jucker E (1948) Carotinoide. Birkhäuser, Basel

    Book  Google Scholar 

  • Kyriakoudi A, Chrysanthou A, Mantzouridou F, Tsimidou MZ (2012) Revisiting extraction of bioactive apocarotenoids from Crocus sativus L. dry stigmas (saffron). Anal Chim Acta 755:77–85

    Article  CAS  Google Scholar 

  • Marcolino VA, Zanin GM, Durrant LR, Benassi MDT, Matioli G (2011) Interaction of curcumin and bixin with β-cyclodextrin: complexation methods, stability and applications in food. J Agric Food Chem 59:3348–3357

    Article  CAS  Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Waaerman W (1996) Applied linear statistical models. McGraw-Hill Companies, London

    Google Scholar 

  • Oguchi T, Tozuka Y, Hanawa T, Mizutani M, Sasaki N, Limmatvapirat S, Yamamoto K (2002) Elucidation of solid-state complexation in ground mixtures of cholic acid and guest compounds. Chem Pharm Bull 50:887–891

    Article  CAS  Google Scholar 

  • Ordoudi SA, Befani CD, Nenadis N, Koliakos GG, Tsimidou MZ (2009) Further examination of antiradical properties of Crocus sativus stigmas extract rich in crocins. J Agric Food Chem 57:3080–3086

    Article  CAS  Google Scholar 

  • Sampathu SR, Shivashankar S, Lewis YS, Wood AB (1984) Saffron (Crocus sativus Linn.)—cultivation, processing, chemistry and standardization. C R C Crit Rev Food Sci Nutr 20:123–157

    Article  CAS  Google Scholar 

  • Schlenk H, Sand DM, Tillotson JA (1955) Stabilization of autoxidizable materials by means of inclusion. J Am Chem Soc 77:3587–3590

    Article  CAS  Google Scholar 

  • Selim K, Tsimidou M, Biliaderis CG (2000) Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem 71:199–206

    Article  CAS  Google Scholar 

  • Singh R, Bharti N, Madan J, Hiremath SN, Singh R (2010) Characterization of cyclodextrin inclusion complexes—a review. J Pharm Sci Technol 2:171–183

    CAS  Google Scholar 

  • Tanaka T, Okemoto H, Kuwahara, N (1995) Crocetin-containing coloring. United States patent, patent number 5:424–407

  • Tarantilis PA, Beljebbar A, Manfait M, Polissiou M (1998) FT-IR, FT-Raman spectroscopic study of carotenoids from saffron (Crocus sativus L.) and some derivatives. Spectrochim Acta Part A 54:651–657

    Article  Google Scholar 

  • Tseng TH, Chu CY, Huang JM, Shiow SJ, Wang CJ (1995) Crocetin protects against oxidative damage in rat primary hepatocytes. Cancer Lett 97:61–67

    Article  CAS  Google Scholar 

  • Ulbricht C, Conquer J, Costa D, Hollands W, Iannuzzi C, Isaac R, Jordan JK, Ledesma N, Ostroff C, Serrano JMG, Shaffer MD, Varghese M (2011) An evidence-based systematic review of saffron (Crocus sativus) by the natural standard research collaboration. J Diet Suppl 8:58–114

    Article  CAS  Google Scholar 

  • Zalacain A, Ordoudi SA, Blázquez I, Ma Diáz-Plaza E, Carmona M, Tsimidou MZ, Alonso GL (2005) Screening method for the detection of artificial colours in saffron using derivative UV-Vis spectrometry after precipitation of crocetin. Food Addit Contam 22:607–615

    Article  CAS  Google Scholar 

  • Zhou H, Yuan X, Zhao Q, Zhao B, Wang X (2013) Determination of oxygen transmission barrier of microcapsule wall by crocetin deterioration kinetics. Eur Food Res Technol 237:639–646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.K. thanks the Foundation of State Scholarships (IKY, Athens, Greece) for financial support and appreciates experience gained for the techniques applied in this study during training schools organized by COST Actions FA1101 and FA0906. Authors are indebted to Professor E. Tsatsaroni and Associate Professors D. Bikiaris and E. Pavlidou for access to AUTh instrumentation of their responsibility and scientific support.

Conflict of Interest

Anastasia Kyriakoudi declares that she has no conflict of interest. Maria Z. Tsimidou declares that she has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Z. Tsimidou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 92 kb)

ESM 2

(DOC 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriakoudi, A., Tsimidou, M.Z. A Food-Grade Approach to Isolate Crocetin from Saffron (Crocus sativus L.) Extracts. Food Anal. Methods 8, 2261–2272 (2015). https://doi.org/10.1007/s12161-015-0111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0111-0

Keywords

Navigation