Skip to main content
Log in

Dissipation of Fungicides, Insecticides, and Acaricide in Tomato Using HPLC-DAD and QuEChERS Methodology

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Excessive use of pesticides in tomato cultivation could lead to impact on environment and health. Here, dissipation rate of six widely used pesticides in growing tomatoes, namely, chlorothalonil, pymetrozine, metalaxyl-m, metalaxyl, abamectin, and propamocarb hydrochloride, was evaluated. Tomato samples were collected within 2 weeks after pesticides application, and the pesticide residues extracted by an optimized QuEChERS method and quantified by high-performance liquid chromatography combined with diode array detection. The half-life of these pesticides was found to be 2.06, 1.65, 19.8, 4.88, 1.06, and 1.29 days for chlorothalonil, pymetrozine, metalaxyl-m, metalaxyl, abamectin, and propamocarb hydrochloride, respectively. Preharvest intervals (PHI) for these pesticides ranged from 3 to 9 days, with the longest being for metalaxyl (9 days), followed by chlorothalonil and abamectin (6 days). Pymetrozine metalaxyl-m, and propamocarb hydrochloride had PHIs of 3, 4, and 4 days, respectively. Due to the immediate consumption of the tomatoes after harvest, the persistence of metalaxyl, chlorothalonil, and abamectin in the environment is expected to have an adverse health effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anastassiades M, Lehotay SJ et al (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    CAS  Google Scholar 

  • AOAC (2000) Official methods of analysis (2000) 17th edn. AOAC International, Gaithersburg

    Google Scholar 

  • APC, Agricultural Pesticide Committee (2010) Pesticides registration. Ministry of Agriculture, Cairo, Egypt

    Google Scholar 

  • Cabras P, Meloni M et al (1989) Pesticide residues in lettuce. 2. Influence of formulations. J Agric Food Chem 37:1405–1407

    Article  CAS  Google Scholar 

  • Cun-Zheng Zhang Z-YZ, Liu X-J, Jiang W, Wua Y-D (2010) Dissipation and environmental fate of herbicide H-9201 in carrot plantings under field conditions. Food Chem 119:874–879

    Article  Google Scholar 

  • Diserens H, Henzelin M (1999) Determination of abamectin residues in fruits and vegetables by high-performance liquid chromatography. J Chromatogr A 833:13–18

    Google Scholar 

  • Ebert TA, Taylor RA et al (1999) Deposit structure and efficacy of pesticide application. Interactions between deposit size, toxicant concentration and deposit number. Pestic Sci 55:783–792

    Article  CAS  Google Scholar 

  • El Nabarawy IM, Abou-Donia MA, Amra HA (1992) Determination of profenofos and malathion residues in fresh tomatoes and paste. Egypt J Appl Sci 7(4):106–111

    Google Scholar 

  • FAO/WHO (2006a) Joint FAO/WHO food standards program. Codex Committee on Pesticide Residues CX/PR 06/38/5, February 177

  • FAO/WHO (ed) (2006b) FAO/WHO, Joint FAO/WHO food standards program

  • Fenoll J, Ruiz E et al (2009) Dissipation rates of insecticides and fungicides in peppers grown in greenhouse and under cold storage conditions. Food Chem 113:727–732

    Article  CAS  Google Scholar 

  • Gambacorta G, Faccia M et al (2005) Pesticide residues in tomato grown in open field. Food Control 16:629–632

    Article  CAS  Google Scholar 

  • Garau VL, Angioni A et al (2002) Disappearance of azoxystrobin, cyprodinil, and fludioxonil on tomato in a greenhouse. J Agric Food Chem 50:1929–1932

    Article  CAS  Google Scholar 

  • Gil Garcia MD, Martinez Vidal JL et al (1997) Determination and degradation of methomyl in tomatoes and green beans grown in greenhouses. J AOAC Int 80(3):633–638

    CAS  Google Scholar 

  • Kamel ASA-DSIMAA (2007) Degradation of the acaricides abamectin, flufenoxuron and amitraz on Saudi Arabian dates. Food Chem 100:1590–1593

    Article  CAS  Google Scholar 

  • Lehotay SJ (2007) Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. J AOAC Int 90(2):485–520

    CAS  Google Scholar 

  • Lehotay SJ, de Kok A, Hiemstra M and Van Bodegraven P (2005) Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J AOAC Int 88(2):595–614

    CAS  Google Scholar 

  • Lehotay SJ, Son KA et al (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A 1217(16):2548–2560

    Article  CAS  Google Scholar 

  • Lesueura C, Knittla P, Gartnera M, Mentlerc A, Fuerhacker M (2008) Analysis of 140 pesticides from conventional farming foodstuff samples after extraction with the modified QuECheRS method. Food Control 19:906–914

    Google Scholar 

  • Li C, Yang T et al (2011) Residues and dynamics of pymetrozine in rice field ecosystem. Chemosphere 82(6):901–904

    Article  CAS  Google Scholar 

  • Luke M, Froberg JE et al (1975) J Assoc Off Anal Chem 58:1020

    CAS  Google Scholar 

  • Mestres R (1988) L_analisi dei residui tossici; il suo interesse e i suoi limiti; esempio dei residui di pesticidi. Tossicologia e sicurezza degli alimenti. Tecniche Nuove, Milan, pp 111–132

    Google Scholar 

  • Minelli EV, Cabras P et al (1996) Persistence and metabolism of fenthion in orange fruit. J Agric Food Chem 44:936–939

    Article  CAS  Google Scholar 

  • Omirou M, Vryzas Z et al (2009) Dissipation rates of iprodione and thiacloprid during tomato production in greenhouse. Food Chemistry 116:499–504

    Article  CAS  Google Scholar 

  • Papadopoulos E, Kotopoulou A et al (1995) Dissipation of cyproconazole and quinalphos on/in grapes. Pestic Sci 45:111–116

    Article  Google Scholar 

  • Rozemeijer JC, Broers HP (2007) The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands). Environ Pollut 148(3):695–706

    Article  CAS  Google Scholar 

  • Shen G, Hu X et al (2009) Kinetic study of the degradation of the insecticide pymetrozine in a vegetable-field ecosystem. J Hazard Mater 164(2–3):497–501

    Article  CAS  Google Scholar 

  • Thompson M, Ellison SL, Wood R (2002) Harmonized guidelines for singlelaboratory validation of methods of analysis. Pure Appl Chem 74(5):835–855

    Article  CAS  Google Scholar 

  • Timme G, Frehse H (1980) Statistical interpretation of the degradational behavior of pesticide residues I. Pflanzenschutz-Nachrichten Bayer 33:47–60

    CAS  Google Scholar 

  • Timme G, Frehse H, Laska V (1986) Statistical interpretation and graphic representation of the degradation behavior of pesticide residues II. Pflanzenschutz-Nach. Bayer 39:187–203

    Google Scholar 

  • White PM, Potter TL et al (2010) Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics. Sci Total Environ 408(6):1393–1402

    Article  CAS  Google Scholar 

  • Womac AR, Mulrooney JE et al (1994) Influence of oil droplet size on the transfer of bifenthrin from cotton to tobacco budworm. Pestic Sci 40:77–83

    Article  CAS  Google Scholar 

  • Zhang Z-Y, Liu X-J, Yu X-Y, Zhang C-Z, Hong X-Y (2007) Pesticide residues in the spring cabbage (Brassica oleracea l. var. capitata) grown in open field. Food Control 18:723–730

    Article  Google Scholar 

Download references

Acknowledgments

I thank all members and staff of Pesticides Residues and Environmental Pollution Department, Central Agricultural Pesticides Laboratory, Agriculture Research Center, Egypt for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Hussein Abd Al-Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd Al-Rahman, S.H., Almaz, M.M. & Ahmed, N.S. Dissipation of Fungicides, Insecticides, and Acaricide in Tomato Using HPLC-DAD and QuEChERS Methodology. Food Anal. Methods 5, 564–570 (2012). https://doi.org/10.1007/s12161-011-9279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-011-9279-0

Keywords

Navigation