Skip to main content

Advertisement

Log in

Use of Microalgae for the Development of Biofertilizers and Biostimulants

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The use of chemical fertilizers in agriculture poses problems for the health of the soil and the environment. Biofertilizers and microalgal biostimulants emerge as an alternative to reduce these damages. This study aimed to understand how microalgae are inserted in the process of developing biofertilizers/biostimulants. A search for research articles was carried out in the Scopus and Web of Science databases and resulted in 87 relevant studies. By analyzing these articles, it was possible to structure this review to understand how microalgal biofertilizers and biostimulants act on plants. The purpose of microalgal biofertilizer is to add nutrients to the soil. The use of wastewater for microalgal growth makes the process less costly and is a treatment alternative. Culture media with higher levels of nitrogen, and microalgae that remove higher levels of nitrate result in biomass with higher levels of protein. Microalgal biostimulants are associated with compounds that can encourage plant growth. These compounds can promote enzymatic and antifungal activity, act similarly to phytohormones, and participate in the synthesis of proteins and amino acids in plants. Microalgal biofertilizers/biostimulants can be part of integrated biorefinery concepts. The integration of the production of these products with the development of biofuels increases the economic viability of these bioproducts. Even though there is a lot of talk about the use of biorefineries, there are few studies on the effective application of this concept with the use of microalgal biomass. An in-depth analysis of the mechanism of action of microalgae in the development of bioproducts for agriculture can make the process more economically advantageous and sustainable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

Abbreviations

N:

Nitrogen

P:

Phosphorous

K:

Potassium

VSS:

Volatile suspended solids

TSS:

Total suspended solids

EC:

Electrical conductivity

TDS:

Total dissolved solids

TOC:

Total organic carbon

DOC:

Dissolved organic carbon

COD:

Chemical oxygen demand

BOD:

Biological oxygen demand

N-NH4 :

Ammonia nitrogen

TKN:

Total Kjeldahl nitrogen

Norg:

Organic nitrogen

TP:

Total phosphorus

SP:

Soluble phosphorus

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

IPA:

Indole-3-propionic acid

PA:

Polyamine molecules

EPS:

Exopolysaccharides

PS:

Polysaccharides

References

  1. Kour D, Rana KL, Yadav AN et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  2. Chittora D, Meena M, Barupal T, Swapnil P (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Reports 22:100737. https://doi.org/10.1016/j.bbrep.2020.100737

    Article  Google Scholar 

  3. Kumar KA, Swain DK, Bhadoria PBS (2018) Split application of organic nutrient improved productivity, nutritional quality and economics of rice-chickpea cropping system in lateritic soil. F Crop Res 223:125–136. https://doi.org/10.1016/j.fcr.2018.04.007

    Article  Google Scholar 

  4. Yin Q, Ren H, Wang R, Zhao Z (2018) Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Sci Total Environ 631–632:895–903. https://doi.org/10.1016/j.scitotenv.2018.03.091

    Article  CAS  PubMed  Google Scholar 

  5. Cai A, Xu M, Wang B et al (2019) Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res 189:168–175. https://doi.org/10.1016/j.still.2018.12.022

    Article  Google Scholar 

  6. Mukherjee C, Chowdhury R, Sutradhar T et al (2016) Parboiled rice effluent: a wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Res 19:225–236. https://doi.org/10.1016/j.algal.2016.09.009

    Article  Google Scholar 

  7. Wang M, Bian Z, Shi J et al (2020) Effect of the nitrogen-fixing bacterium Pseudomonas protegens CHA0-ΔretS-nif on garlic growth under different field conditions. Ind Crop Prod 145:111982. https://doi.org/10.1016/j.indcrop.2019.111982

    Article  CAS  Google Scholar 

  8. Cui N, Cai M, Zhang X et al (2020) Runoff loss of nitrogen and phosphorus from a rice paddy field in the east of China: effects of long-term chemical N fertilizer and organic manure applications. Glob Ecol Conserv 22:e01011. https://doi.org/10.1016/j.gecco.2020.e01011

    Article  Google Scholar 

  9. Huang J, Chun XuC, Ridoutt BG et al (2017) Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J Clean Prod 159:171–179. https://doi.org/10.1016/j.jclepro.2017.05.008

    Article  Google Scholar 

  10. Nayak M, Swain DK, Sen R (2019) Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Sci Total Environ 682:475–484. https://doi.org/10.1016/j.scitotenv.2019.05.123

    Article  CAS  PubMed  Google Scholar 

  11. Moreira JB, Santos TD, Duarte JH et al (2021) Role of microalgae in circular bioeconomy: from waste treatment to biofuel production. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-021-02149-1

    Article  Google Scholar 

  12. Khan SA, Sharma GK, Malla FA et al (2019) Microalgae based biofertilizers: a biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. J Clean Prod 211:1412–1419. https://doi.org/10.1016/j.jclepro.2018.11.281

    Article  CAS  Google Scholar 

  13. Dineshkumar R, Subramanian J, Arumugam A, et al (2020) Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. waste and biomass valorization 11:77–87. https://doi.org/10.1007/s12649-018-0466-8

  14. Mukherjee C, Chowdhury R, Ray K (2015) Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria - a step to phosphorus security in agriculture. Front Microbiol 6:1–7. https://doi.org/10.3389/fmicb.2015.01421

    Article  CAS  Google Scholar 

  15. Zarezadeh S, Moheimani NR, Jenkins SN et al (2019) Microalgae and phototrophic purple bacteria for nutrient recovery from agri-industrial effluents : influences on plant growth, rhizosphere bacteria, and putative carbon- and nitrogen-cycling genes. Front Plant Sci 10:1–13. https://doi.org/10.3389/fpls.2019.01193

    Article  Google Scholar 

  16. El AH, Benhima R, Elbaouchi A et al (2018) Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J Appl Phycol 30:2929–2941. https://doi.org/10.1007/s10811-017-1382-1

    Article  CAS  Google Scholar 

  17. Rachidi F, Benhima R, Sbabou L, El Arroussi H (2020) Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution. Biotechnol Reports 25:e00426. https://doi.org/10.1016/j.btre.2020.e00426

    Article  Google Scholar 

  18. Rachidi F, Benhima R, Kasmi Y et al (2021) Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci Rep 11:1–16. https://doi.org/10.1038/s41598-020-78820-2

    Article  CAS  Google Scholar 

  19. Zainan NH, Sapardi MAM, Ho BCH, et al (2019) Kinetic and thermodynamic characterization of amino acids generation via subcritical water reaction of microalgae Nannochloropsis sp . biomass. Biomass Convers Biorefinery

  20. Matos ÂP, da Silva T, Sant’Anna ES, (2021) The feasibility of using inland desalination concentrate (DC) as an alternative substrate for Spirulina platensis mass cultivation. Waste Biomass Valorization 12:3193–3203. https://doi.org/10.1007/s12649-020-01233-9

    Article  CAS  Google Scholar 

  21. JF Magro FG Freitag VAF Bergoli et al 2021 Microalgae consortia cultivation using effluents for bioproduct manufacture Rev Environ Sci Bio/Technology 9https://doi.org/10.1007/s11157-021-09587-9

  22. Sharma GK, Khan SA, Shrivastava M et al (2021) Circular economy fertilization: phycoremediated algal biomass as biofertilizers for sustainable crop production. J Environ Manage 287:112295. https://doi.org/10.1016/j.jenvman.2021.112295

    Article  CAS  PubMed  Google Scholar 

  23. Silambarasan S, Logeswari P, Sivaramakrishnan R et al (2021) Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere 268:129323. https://doi.org/10.1016/j.chemosphere.2020.129323

    Article  CAS  PubMed  Google Scholar 

  24. da Faresin L, S, Devos RJB, Reinehr CO, Colla LM, (2022) Development of ice cream with reduction of sugar and fat by the addition of inulin, Spirulina platensis or phycocyanin. Int J Gastron Food Sci 27:100445. https://doi.org/10.1016/j.ijgfs.2021.100445

    Article  Google Scholar 

  25. Mahmoud YI, Shehata AMM, Fares NH, Mahmoud AA (2021) Spirulina inhibits hepatocellular carcinoma through activating p53 and apoptosis and suppressing oxidative stress and angiogenesis. Life Sci 265:118827. https://doi.org/10.1016/j.lfs.2020.118827

    Article  CAS  PubMed  Google Scholar 

  26. Rempel A, De SF, Cláudia A et al (2019) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol 288:121588. https://doi.org/10.1016/j.biortech.2019.121588

    Article  CAS  PubMed  Google Scholar 

  27. Diez-Montero R, Vassalle L, Passos F et al (2020) Scaling-up the anaerobic digestion of pretreated microalgal biomass within a water resource. Energies 13:5484

    Article  CAS  Google Scholar 

  28. Ekinci K, Erdal I, Uysal Ö et al (2019) Anaerobic digestion of three microalgae biomasses and assessment of digestates as biofertilizer for plant growth. Environ Prog Sustain Energy 38:1–9. https://doi.org/10.1002/ep.13024

    Article  CAS  Google Scholar 

  29. de Souza MP, Hoeltz M, Benitez LB et al (2019) Microalgae and clean technologies: a review. Clean - Soil Air Water 47:1800380. https://doi.org/10.1002/clen.201800380

    Article  CAS  Google Scholar 

  30. Visentin C, da Trentin AW, Braun AB, Thomé A (2020) Life cycle sustainability assessment: a systematic literature review through the application perspective, indicators, and methodologies. J Clean Prod 270:122509. https://doi.org/10.1016/j.jclepro.2020.122509

    Article  Google Scholar 

  31. de CastroCalijuri JML, Mattiello EM et al (2020) Algal biomass from wastewater: soil phosphorus bioavailability and plants productivity. Sci Total Environ 711:135088. https://doi.org/10.1016/j.scitotenv.2019.135088

    Article  CAS  Google Scholar 

  32. Moges ME, Heistad A, Heidorn T (2020) Nutrient Recovery from anaerobically treated blackwater and improving its effluent quality through microalgae biomass production

  33. Molina-Miras A, López-Rosales L, Sánchez-Mirón A et al (2018) Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: Production of carotenoids and fatty acids. Bioresour Technol 265:257–267. https://doi.org/10.1016/j.biortech.2018.05.104

    Article  CAS  PubMed  Google Scholar 

  34. Molina-Miras A, Lopez-Rosales L, Sanchez-Miron A et al (2020) Influence of culture medium recycling on the growth of a marine dinoflagellate microalga and bioactives production in a raceway photobioreactor. Algal Res 47:101820. https://doi.org/10.1016/j.algal.2020.101820

    Article  Google Scholar 

  35. Sathish A, Marlar T, Sims RC (2015) Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production. Bioresour Technol 193:15–24. https://doi.org/10.1016/j.biortech.2015.06.052

    Article  CAS  PubMed  Google Scholar 

  36. Singh N, Gupta A, Mathur AS et al (2020) Integrated consolidated bioprocessing for simultaneous production of omega-3 fatty acids and bioethanol. Biomass Bioenerg 137:105555. https://doi.org/10.1016/j.biombioe.2020.105555

    Article  CAS  Google Scholar 

  37. Uggetti E, García J, Álvarez JA, García-Galán MJ (2018) Start-up of a microalgae-based treatment system within the biorefinery concept : from wastewater to bioproducts. Water Sci Technol 78:114–124. https://doi.org/10.2166/wst.2018.195

    Article  CAS  PubMed  Google Scholar 

  38. Ortiz-Marquez JCF, Nascimento M, do, Dublan M de los A, Curatti L, (2012) Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae. Appl Environ Microbiol 78:2345–2352. https://doi.org/10.1128/AEM.06260-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ambrosio R, Ortiz- JCF, Curatti L (2017) Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae Rafael. Metab Eng. https://doi.org/10.1016/j.ymben.2017.01.002

    Article  PubMed  Google Scholar 

  40. Bettani SR, de Ragazzo G, O, Santos NL, et al (2019) Sugarcane vinasse and microalgal biomass in the production of pectin particles as an alternative soil fertilizer. Carbohydr Polym 203:322–330. https://doi.org/10.1016/j.carbpol.2018.09.041

    Article  CAS  PubMed  Google Scholar 

  41. Romero-Villegas GI, Fiamengo M, Fernández FGA, Grima EM (2018) Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors. J Biotechnol 284:102–114. https://doi.org/10.1016/j.jbiotec.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  42. Supraja KV, Behera B, Balasubramanian P (2020) Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. Ind Crop Prod 151:112453. https://doi.org/10.1016/j.indcrop.2020.112453

    Article  CAS  Google Scholar 

  43. Lorentz JF, Calijuri ML, Assemany PP et al (2020) Microalgal biomass as a biofertilizer for pasture cultivation: Plant productivity and chemical composition. J Clean Prod 276:124130. https://doi.org/10.1016/j.jclepro.2020.124130

    Article  CAS  Google Scholar 

  44. Umamaheswari J, Shanthakumar S (2021) Paddy-soaked rice mill wastewater treatment by phycoremediation and feasibility study on use of algal biomass as biofertilizer. J Chem Technol Biotechnol 96:394–403. https://doi.org/10.1002/jctb.6551

    Article  CAS  Google Scholar 

  45. Sharma AK (2019) Biofertilizers for sustainable agriculture and environment. Springer, Switzerland

    Google Scholar 

  46. Barone V, Baglieri A, Stevanato P et al (2018) Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30:1061–1071. https://doi.org/10.1007/s10811-017-1283-3

    Article  CAS  Google Scholar 

  47. Das P, Quadir MA, Thaher MI et al (2019) Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer. Int J Environ Sci Technol 16:3355–3364. https://doi.org/10.1007/s13762-018-1867-8

    Article  CAS  Google Scholar 

  48. Choudhary P, Prajapati SK, Kumar P et al (2017) Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresour Technol 224:276–284. https://doi.org/10.1016/j.biortech.2016.10.078

    Article  CAS  PubMed  Google Scholar 

  49. Ferreira A, Ribeiro B, Ferreira AF et al (2019) Scenedesmus obliquus microalga- based biorefinery – from brewery effluent to bioactive compounds, biofuels and biofertilizers – aiming at a circular bioeconomy. Biofuels Bioprod Biorefining 13:1169–1186. https://doi.org/10.1002/bbb.2032

    Article  CAS  Google Scholar 

  50. Viegas C, Gouveia L, Gonçalves M (2021) Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. J Environ Manage 286:112187. https://doi.org/10.1016/j.jenvman.2021.112187

  51. Gouveia L, Sousa C, Ambrosano L et al (2016) Microalgae biomass production using wastewater : treatment and costs Scale-up considerations. Algal Res 16:167–176. https://doi.org/10.1016/j.algal.2016.03.010

    Article  Google Scholar 

  52. Baldisserotto C, Demaria S, Accoto O et al (2020) Removal of nitrogen and phosphorus from thickening effluent of an urban wastewater. Plants 9:1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Viegas C, Gouveia L, Gonçalves M (2021) Bioremediation of cattle manure using microalgae after pre-treatment with biomass ash. Bioresour Technol Reports 14:100681. https://doi.org/10.1016/j.biteb.2021.100681

    Article  CAS  Google Scholar 

  54. D Zapata C Arroyave L Cardona et al 2021 Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters Algal Res 59https://doi.org/10.1016/j.algal.2021.102469

  55. Zheng M, Dai J, Ji X et al (2021) An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. Bioresour Technol 340:125703. https://doi.org/10.1016/j.biortech.2021.125703

    Article  CAS  PubMed  Google Scholar 

  56. Li J, Lens PNL, Ferrer I, Du Laing G (2021) Evaluation of selenium-enriched microalgae produced on domestic wastewater as biostimulant and biofertilizer for growth of selenium-enriched crops. J Appl Phycol 33:3027–3039. https://doi.org/10.1007/s10811-021-02523-y

    Article  CAS  Google Scholar 

  57. Salam KA (2019) Towards sustainable development of microalgal biosorption for treating effluents containing heavy metals. Biofuel 22:948–961. https://doi.org/10.18331/BRJ2019.6.2.2

  58. SW Jo JM Do H Na et al 2020 Assessment of biomass potentials of microalgal communities in open pond raceways using mass cultivation PeerJ 2020https://doi.org/10.7717/peerj.9418

  59. Barone V, Puglisi I, Fragalà F et al (2018) Effect of living cells of microalgae or their extracts on soil enzyme activities. Arch Agron Soil Sci 65:712–726. https://doi.org/10.1080/03650340.2018.1521513

    Article  CAS  Google Scholar 

  60. Yilmaz E, Sönmez M (2017) The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil Tillage Res 168:118–124. https://doi.org/10.1016/j.still.2017.01.003

    Article  Google Scholar 

  61. Srivastava S, Srivastava S, Bist V, et al (2018) Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2018.02.039

  62. Deepika P, MubarakAli D (2020) Production and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. Biocatal Agric Biotechnol 28:101701. https://doi.org/10.1016/j.bcab.2020.101701

    Article  Google Scholar 

  63. Lv J, Liu S, Feng J et al (2020) Effects of microalgal biomass as biofertilizer on the growth of cucumber and microbial communities in the cucumber rhizosphere. Turk J Botany 44:167–177. https://doi.org/10.3906/bot-1906-1

    Article  CAS  Google Scholar 

  64. Coppens J, Grunert O, Van Den HS et al (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28:2367–2377. https://doi.org/10.1007/s10811-015-0775-2

    Article  CAS  Google Scholar 

  65. Callejo-López JA, Ramírez M, Cantero D, Bolívar J (2020) Versatile method to obtain protein- and/or amino acid-enriched extracts from fresh biomass of recalcitrant microalgae without mechanical pretreatment. Algal Res 50:102010. https://doi.org/10.1016/j.algal.2020.102010

    Article  Google Scholar 

  66. Stirk WA, Bálint P, Vambe M et al (2020) Effect of cell disruption methods on the extraction of bioactive metabolites from microalgal biomass. J Biotechnol 307:35–43. https://doi.org/10.1016/j.jbiotec.2019.10.012

    Article  CAS  PubMed  Google Scholar 

  67. Navarro-López E, Ruíz-Neto A, Ferreira A et al (2020) Biostimulant potential of Scenedesmus obliquus grown in brewery wastewater. Molecules 25:664

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170. https://doi.org/10.1134/S1021443707020021

    Article  CAS  Google Scholar 

  69. Hashtroudi MS, Ghassempour A, Riahi H et al (2013) Endogenous auxins in plant growth-promoting Cyanobacteria-Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 25:379–386. https://doi.org/10.1007/s10811-012-9872-7

    Article  CAS  Google Scholar 

  70. Alvarez AL, Weyers SL, Goemann HM et al (2021) Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res 54:102200. https://doi.org/10.1016/j.algal.2021.102200

    Article  Google Scholar 

  71. K Ranglová GE Lakatos JA CâmaraManoel et al 2021 Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater Algal Res 53https://doi.org/10.1016/j.algal.2020.102136

  72. Bayona-Morcillo PJ, Plaza BM, Gómez-Serrano C et al (2020) Effect of the foliar application of cyanobacterial hydrolysate (Arthrospira platensis) on the growth of Petunia x hybrida under salinity conditions. J Appl Phycol 32:4003–4011

    Article  CAS  Google Scholar 

  73. Plaza BM, Gómez-Serrano C, Acién-Fernández FG, Jimenez-Becker S (2018) Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J Appl Phycol 30:2359–2365

    Article  CAS  Google Scholar 

  74. Mógor ÁF, Ördög V, Pace G et al (2018) Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J Appl Phycol 30:453–460. https://doi.org/10.1007/s10811-017-1242-z

    Article  CAS  Google Scholar 

  75. Freudenberg RA, Baier T, Einhaus A et al (2021) High cell density cultivation enables efficient and sustainable recombinant polyamine production in the microalga Chlamydomonas reinhardtii. Bioresour Technol 323:124542. https://doi.org/10.1016/j.biortech.2020.124542

    Article  CAS  PubMed  Google Scholar 

  76. Farid R, Mutale-Joan C, Redouane B et al (2019) Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Appl Biochem Biotechnol 188:225–240

    Article  CAS  PubMed  Google Scholar 

  77. Romero García JM, Acién Fernández FG, Fernández Sevilla JM (2012) Development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol 112:164–170. https://doi.org/10.1016/j.biortech.2012.02.094

    Article  CAS  PubMed  Google Scholar 

  78. González I, Ekelhof A, Herrero N et al (2020) Wastewater nutrient recovery using twin-layer microalgae technology for biofertilizer production. Water Sci Technol 82:1044–1061. https://doi.org/10.2166/wst.2020.372

    Article  CAS  PubMed  Google Scholar 

  79. Patel A, Krikigianni E, Rova U et al (2022) Bioprocessing of volatile fatty acids by oleaginous freshwater microalgae and their potential for biofuel and protein production. Chem Eng J 438:135529. https://doi.org/10.1016/j.cej.2022.135529

    Article  CAS  Google Scholar 

  80. Mógor ÁF, Amatussi JDO, Mógor G, Lara GB De (2018) Bioactivity of cyanobacterial biomass related to amino acids induces growth and metabolic changes on seedlings and yield gains of organic red beet. 966–978. https://doi.org/10.4236/ajps.2018.95074

  81. Adamuchio-Oliveira LG, Miguel S, Mógor G et al (2020) Chitosan associated with chelated copper applied on tomatoes : enzymatic and anatomical changes related to plant defense responses. Sci Hortic (Amsterdam) 271:109431. https://doi.org/10.1016/j.scienta.2020.109431

    Article  CAS  Google Scholar 

  82. Branco-Vieira M, San Martin S, Agurto C et al (2020) Biotechnological potential of Phaeodactylum tricornutum for biorefinery processes. Fuel 268:117357. https://doi.org/10.1016/j.fuel.2020.117357

    Article  CAS  Google Scholar 

  83. Agarwal A, Mhatre A, Pandit R, Lali AM (2020) Synergistic biorefinery of Scenedesmus obliquus and Ulva lactuca in poultry manure towards sustainable bioproduct generation. Bioresour Technol 297:122462. https://doi.org/10.1016/j.biortech.2019.122462

    Article  CAS  PubMed  Google Scholar 

  84. Dineshkumar R, Subramanian J, Gopalsamy J et al (2019) The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste and Biomass Valorization 10:1101–1110. https://doi.org/10.1007/s12649-017-0123-7

    Article  CAS  Google Scholar 

  85. de Castro J, S, Calijuri ML, Assemany PP, et al (2017) Microalgae biofilm in soil: Greenhouse gas emissions, ammonia volatilization and plant growth. Sci Total Environ 574:1640–1648. https://doi.org/10.1016/j.scitotenv.2016.08.205

    Article  CAS  PubMed  Google Scholar 

  86. Iyovo GD, Du G, Chen J (2010) Sustainable bioenergy bioprocessing: biomethane production, digestate as biofertilizer and as supplemental feed in algae cultivation to promote algae biofuel commercialization. J Microb Biochem Technol 2:100–106. https://doi.org/10.4172/1948-5948.1000032

    Article  CAS  Google Scholar 

  87. Jochum M, Moncayo LP, Jo Y (2018) Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor. PLoS ONE 13:1–13. https://doi.org/10.1371/journal.pone.0203456

    Article  CAS  Google Scholar 

  88. Solé-Bundó M, Cucina M, Folch M et al (2017) Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Sci Total Environ 586:1–9. https://doi.org/10.1016/j.scitotenv.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  89. Juárez JM, Pastor ER, Sevilla JMF et al (2018) Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants. Bioresour Technol 257:30–38. https://doi.org/10.1016/j.biortech.2018.02.063

    Article  CAS  Google Scholar 

  90. Renuka N, Prasanna R, Sood A et al (2016) Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res 23:6608–6620. https://doi.org/10.1007/s11356-015-5884-6

    Article  CAS  Google Scholar 

  91. Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061. https://doi.org/10.1007/s10811-015-0625-2

    Article  PubMed  Google Scholar 

  92. Marks EAN, Montero O, Rad C (2019) The biostimulating effects of viable microalgal cells applied to a calcareous soil: Increases in bacterial biomass, phosphorus scavenging, and precipitation of carbonates. Sci Total Environ 692:784–790. https://doi.org/10.1016/j.scitotenv.2019.07.289

    Article  CAS  PubMed  Google Scholar 

  93. Dineshkumar R, Subramanian J, Sampathkumar P (2020) Prospective of Chlorella vulgaris to augment growth and yield parameters along with superior seed qualities in black Gram, Vigna mungo (L.). Waste and Biomass Valorization 11:1279–1287. https://doi.org/10.1007/s12649-018-0465-9

    Article  CAS  Google Scholar 

  94. Arashiro LT, Montero N, Ferrer I et al (2018) Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ 622–623:1118–1130. https://doi.org/10.1016/j.scitotenv.2017.12.051

    Article  CAS  PubMed  Google Scholar 

  95. Martínez LS, Hurtado MG, González LMC, et al (2019) Preparation of a slow release biofertilizer from a polymeric urea-formaldehyde matrix (PUFM). Phyton, Int J Exp Bot Prep 88:459–470. https://doi.org/10.32604/phyton.2019.07719

  96. Gemin LG, Mógor ÁF, De Oliveira AJ, Mógor G (2019) Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci Hortic (Amsterdam) 256:108560. https://doi.org/10.1016/j.scienta.2019.108560

    Article  CAS  Google Scholar 

  97. Michalak KGI, Baśladyńska PPS, Chojnacka K (2019) Potential applications of cyanobacteria : Spirulina platensis filtrates and homogenates in agriculture. World J Microbiol Biotechnol 35:1–18. https://doi.org/10.1007/s11274-019-2653-6

    Article  CAS  Google Scholar 

  98. Barone V, Puglisi I, Baglieri A (2019) Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J Appl Phycol 31:465–470

    Article  CAS  Google Scholar 

  99. Michalak I, Chojnacka K, Dmytryk A et al (2016) Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Front Plant Sci 7:1–11. https://doi.org/10.3389/fpls.2016.01591

    Article  Google Scholar 

  100. Banu JR, Preethi KS et al (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:122822. https://doi.org/10.1016/j.biortech.2020.122822

    Article  CAS  Google Scholar 

  101. Mohan SR (2016) Strategy and design of innovation policy roadmapping for a waste biorefinery. Bioresour Technol 215:76–83. https://doi.org/10.1016/j.biortech.2016.03.090

    Article  CAS  Google Scholar 

  102. Sun B, Gu L, Bao L et al (2020) Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biol Biochem 148:107911. https://doi.org/10.1016/j.soilbio.2020.107911

    Article  CAS  Google Scholar 

  103. El-Serafy RS, El-Sheshtawy AA (2020) Effect of nitrogen fixing bacteria and moringa leaf extract on fruit yield, estragole content and total phenols of organic fennel. Sci Hortic (Amsterdam) 265:109209. https://doi.org/10.1016/j.scienta.2020.109209

    Article  CAS  Google Scholar 

  104. Fernández FGA, Reis A, Wijffels RH et al (2021) The role of microalgae in the bioeconomy. N Biotechnol 61:99–107. https://doi.org/10.1016/j.nbt.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  105. Potijun S, Jaingam S, Sanevas N, et al (2020) Improving the co-production of triacylglycerol and isoprenoids in Chlamydomonas. Biofuel Res J 28:1235–1244. https://doi.org/10.18331/BRJ2020.7.4.2

  106. Halim R, Papachristou I, Chen GQ et al (2022) The effect of cell disruption on the extraction of oil and protein from concentrated microalgae slurries. Bioresour Technol 346:126597. https://doi.org/10.1016/j.biortech.2021.126597

    Article  CAS  PubMed  Google Scholar 

  107. Menegotto ALL, Fernandes IA, Colla LM et al (2020) Thermic and techno-functional properties of Arthrospira platensis protein fractions obtained by membrane separation process. J Appl Phycol 32:3885–3900

    Article  CAS  Google Scholar 

  108. Vieira BB, Soares J, Amorim ML et al (2021) Optimized extraction of neural carbohydrates, crude lipids and photosynthetic pigments from the wet biomass of the microalga Scenedesmus obliquus BR003. Sep Purif Technol 269:118711

    Article  CAS  Google Scholar 

  109. Panahi HKS, Tabatabaei M, Aghbashlo M et al (2019) Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour Technol Reports 7:100216. https://doi.org/10.1016/j.biteb.2019.100216

    Article  Google Scholar 

  110. Yek PNY, Mahari WAW, Kong SH et al (2022) Pilot-scale co-processing of lignocellulosic biomass, algae, shellfish waste via thermochemical approach : Recent progress and future directions. Bioresour Technol 347:126687. https://doi.org/10.1016/j.biortech.2022.126687

    Article  CAS  PubMed  Google Scholar 

  111. JDS Castro ML Calijuri PP Assemany VJ Ribeiro 2020 Microalgae based biofertilizer: a life cycle approach Sci Total Environ 138138https://doi.org/10.1016/j.scitotenv.2020.138138

Download references

Acknowledgements

We would like to thank the National Council for Scientific and Technological Development (CNPq, Brazil), and the Coordination of Improvement of Higher-Level Personnel (PROSUC/CAPES, Brazil).

Funding

The present study was financially supported by the National Council for Scientific and Technological Development (CNPq, Brazil) according fellowships to L. Colla (308009/2018–5). The present study was financially supported by the Coordination of Improvement of Higher-Level Personnel (PROSUC/CAPES, Brazil), finance code 001.

Author information

Authors and Affiliations

Authors

Contributions

Julia C. A. Braun: Conceptualization, methodology, literature search and data analysis, writing—original draft, writing—review and editing. Luciane M. Colla: Conceptualization, writing—review and editing.

Corresponding author

Correspondence to Luciane M. Colla.

Ethics declarations

Ethics Approval and Consent to Participate.

This is an original work by the authors. The manuscript has not been published and is not submitted to more than one journal.

Consent for Publication

All authors agree with submission to BioEnergy Research, being represented by the author for correspondence.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Wastewater treatment techniques and the production of microalgal biofertilizers can be associated.

• Microalgal biofertilizer is related to the incorporation of biomass in the soil.

• Biostimulant is produced by extracting intracellular compounds from biomass.

• The production of algal biofertilizers is part of the concept of biorefineries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, J.C.A., Colla, L.M. Use of Microalgae for the Development of Biofertilizers and Biostimulants. Bioenerg. Res. 16, 289–310 (2023). https://doi.org/10.1007/s12155-022-10456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10456-8

Keywords

Navigation