Skip to main content

Advertisement

Log in

Bioenergy Recovery from Anaerobic Co-Digestion of Crude Glycerol and Domestic Sewage In-Series Reactor: Microbial Characterization and System Performance

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Experiments in series horizontal anaerobic reactors with fixed bed (HARFB) were conducted to evaluate the co-digestion of crude glycerol (CG) from biodiesel production and domestic sewage (DS) concerning the start-up strategy and best organic loading rate (OLR) to improve biogas production as well as to analyze the dynamic changes in the anaerobic microbial consortium during their operation. This approach can be used to increase the buffering capacity of anaerobic reactors as well as dilute toxic compounds. The reactor configuration applied at the present research is a novelty about CG and DS co-digestion and biogas production. The highest hydrogen generation was 10.3 mol H2 (m3 day−1) in reactor R1, and the highest methane yield was 312.0 and 283.9 L CH4 (m3 day−1) in R2 and R3, respectively. These values, obtained with mixed culture, agree with previous co-digestion research. The three-stage system showed high efficiency in removing crude glycerol and chemical oxygen demand (COD), with consumptions of 99.9%, both. The strategy of co-digestion is positive to avoid substrate inhibition. In addition, there was a change in the relative abundance of microorganisms among R1, R2, and R3 and a considerable decrease in the diversity index in the fermentation reactor (R1). The results have shown the potential of applying HARFB reactors for energy recovery and alternative waste disposal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source and samples from R1, R2, and R3 at the end of Phase 1

Fig. 4

Similar content being viewed by others

Data Availability

All experimental data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Kaur J, Sarma AK, Jha MK, Gera P (2020) Valorisation of crude glycerol to value-added products: perspectives of process technology, economics and environmental issues. Biotechnol Reports 27:e00487. https://doi.org/10.1016/j.btre.2020.e00487

    Article  Google Scholar 

  2. Brazilian National Agency of Petroleum NG and B (2022) Oil, natural gas and biofuels statistical yearbook 2020. ANP/SDP. https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/oil-natural-gas-and-biofuels-statistical-yearbook-2020. Accessed 4 Feb 2022

  3. Rivero M, Solera R, Perez M (2014) Anaerobic mesophilic co-digestion of sewage sludge with glycerol: Enhanced biohydrogen production. Int J Hydrog Energy 39:2481–2488. https://doi.org/10.1016/j.ijhydene.2013.12.006

    Article  CAS  Google Scholar 

  4. Tangkathitipong P, Intanoo P, Butpan J (2017) Separate production of hydrogen and methane from biodiesel wastewater with added glycerin by two-stage anaerobic sequencing batch reactors (ASBR). Renew Energy 113:1077–1085. https://doi.org/10.1016/j.renene.2017.06.056

    Article  CAS  Google Scholar 

  5. Rodrigues CV, Nespeca MG, Sakamoto IK et al (2019) Bioconversion of crude glycerol from waste cooking oils into hydrogen by sub-tropical mixed and pure cultures. Int J Hydrog Energy 4:144–154. https://doi.org/10.1016/j.ijhydene.2018.02.174

    Article  CAS  Google Scholar 

  6. Sawasdee V, Haosagul S, Pisutpaisal N (2019) Co-digestion of waste glycerol and glucose to enhance biogas production. Int J Hydrog Energy 44:29575–29582. https://doi.org/10.1016/j.ijhydene.2019.03.144

    Article  CAS  Google Scholar 

  7. Chilakamarry CR, Sakinah AMM, Zularisam AW et al (2021) Bioconversion of glycerol into biofuels—opportunities and challenges. BioEnergy Res. https://doi.org/10.1007/s12155-021-10353-6

    Article  Google Scholar 

  8. Robles Á, Aguado D, Barat R et al (2020) New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresour Technol 300:122673. https://doi.org/10.1016/j.biortech.2019.122673

    Article  CAS  PubMed  Google Scholar 

  9. Passos F, Bressani-Ribeiro T, Rezende S, Chernicharo CAL (2020) Potential applications of biogas produced in small-scale UASB-based sewage treatment plants in Brazil. Energies 13:3356. https://doi.org/10.3390/en13133356

  10. Silva JA da, F.M. Braga A, Fermoso FG, et al (2021) Evaluation of the influence of trace metals on methane production from domestic sewage, using the Plackett-Burman experimental design. J Environ Manage 294:113002. https://doi.org/10.1016/j.jenvman.2021.113002

  11. Rodrigues CV, Oliveira Santana K, Nespeca MG et al (2020) Energy valorization of crude glycerol and sanitary sewage in hydrogen generation by biological processes. Int J Hydrog Energy 45:11943–11953. https://doi.org/10.1016/j.ijhydene.2020.02.168

    Article  CAS  Google Scholar 

  12. Sivagurunathan P, Kuppam C, Mudhoo A et al (2018) A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents. Crit Rev Biotechnol 38:868–882

    Article  CAS  PubMed  Google Scholar 

  13. da Silva Mazareli RC, Duda RM, Leite VD, de Oliveira RA (2016) Anaerobic co-digestion of vegetable waste and swine wastewater in high-rate horizontal reactors with fixed bed. Waste Manag 52:112–121. https://doi.org/10.1016/j.wasman.2016.03.021

    Article  CAS  Google Scholar 

  14. Aydin S, Ince B, Ince O (2015) Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors. Water Res 76:88–98. https://doi.org/10.1016/j.watres.2015.02.043

    Article  CAS  PubMed  Google Scholar 

  15. Pachiega R, Sakamoto IK, Varesche MB et al (2018) Obtaining and characterization of mesophilic bacterial consortia from tropical sludges applied on biohydrogen production. Waste Biomass Valorization. https://doi.org/10.1007/s12649-017-0185-6

    Article  Google Scholar 

  16. Rossi DM, Berne Da Costa J, Aquino De Souza E et al (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrog Energy 36:4814–4819. https://doi.org/10.1016/j.ijhydene.2011.01.005

    Article  CAS  Google Scholar 

  17. Rodrigues BCG, De Mello BS, Gonsales Da Costa Araujo ML, et al (2021) Soybean molasses as feedstock for sustainable generation of biomethane using high-rate anaerobic reactor. J Environ Chem Eng 9:105226. https://doi.org/10.1016/j.jece.2021.105226

  18. Maintinguer S, Fernandes B, Duarte I et al (2008) Fermentative hydrogen production by microbial consortium. Int J Hydrog Energy 33:4309–4317. https://doi.org/10.1016/j.ijhydene.2008.06.053

    Article  CAS  Google Scholar 

  19. Nation JL (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol 58:347–351. https://doi.org/10.3109/10520298309066811

    Article  CAS  PubMed  Google Scholar 

  20. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491. https://doi.org/10.1128/AEM.66.12.5488-5491.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vasconcelos EAF, Santaella ST, Viana MB et al (2019) Composition and ecology of bacterial and archaeal communities in anaerobic reactor fed with residual glycerol. Anaerobe 59:145–153. https://doi.org/10.1016/j.anaerobe.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  22. Jiraprasertwong A, Seneesrisakul K, Pornmai K, Chavadej S (2020) High methanogenic activity of a three-stage UASB in relation to the granular sludge formation. Sci Total Environ 724:138145. https://doi.org/10.1016/j.scitotenv.2020.138145

    Article  CAS  PubMed  Google Scholar 

  23. Sarma SJ, Brar SK, Sydney EB et al (2012) Microbial hydrogen production by bioconversion of crude glycerol: a review. Int J Hydrog Energy 37:6473–6490. https://doi.org/10.1016/j.ijhydene.2012.01.050

    Article  CAS  Google Scholar 

  24. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104:1098–1106. https://doi.org/10.1002/bit.22487

    Article  CAS  PubMed  Google Scholar 

  25. Ngo TA, Kim MS, Sim SJ (2011) High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrog Energy 36:5836–5842. https://doi.org/10.1016/j.ijhydene.2010.11.057

    Article  CAS  Google Scholar 

  26. Veroneze ML, Schwantes D, Gonçalves AC et al (2019) Production of biogas and biofertilizer using anaerobic reactors with swine manure and glycerin doses. J Clean Prod 213:176–184. https://doi.org/10.1016/j.jclepro.2018.12.181

    Article  CAS  Google Scholar 

  27. Veras STS, Rojas P, Florencio L et al (2019) Production of 1,3-propanediol from pure and crude glycerol using a UASB reactor with attached biomass in silicone support. Bioresour Technol 279:140–148. https://doi.org/10.1016/j.biortech.2019.01.125

    Article  CAS  PubMed  Google Scholar 

  28. Silva FMS, Mahler CF, Oliveira LB, Bassin JP (2018) Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Manag 76:339–349. https://doi.org/10.1016/j.wasman.2018.02.039

    Article  CAS  PubMed  Google Scholar 

  29. Dinh NT (2020) A novel enhancement for the start-up of methane fermentation reactor by inoculating the acclimated sludge as a seeding material. IOP Conf Ser Mater Sci Eng 736:. https://doi.org/10.1088/1757-899X/736/4/042041

  30. Filippidou S, Junier T, Wunderlin T et al (2015) Under-detection of endospore-forming Firmicutes in metagenomic data. Comput Struct Biotechnol J 13:299–306. https://doi.org/10.1016/j.csbj.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahlert S, Zimmermann R, Ebling J, König H (2016) Analysis of propionate-degrading consortia from agricultural biogas plants. Microbiologyopen 5:1027–1037. https://doi.org/10.1002/mbo3.386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maintinguer SI, Fernandes BS, Duarte ICS et al (2011) Fermentative hydrogen production with xylose by Clostridium and Klebsiella species in anaerobic batch reactors. Int J Hydrog Energy 36:13508–13517. https://doi.org/10.1016/j.ijhydene.2011.07.095

    Article  CAS  Google Scholar 

  33. Wu Y, Wang C, Liu X et al (2016) A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresour Technol 211:16–23. https://doi.org/10.1016/j.biortech.2016.03.050

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y, Wu J, Yuan X et al (2017) The effect of mixing intensity on the performance and microbial dynamics of a single vertical reactor integrating acidogenic and methanogenic phases in lignocellulosic biomass digestion. Bioresour Technol 238:542–551. https://doi.org/10.1016/j.biortech.2017.04.080

    Article  CAS  PubMed  Google Scholar 

  35. Castelló E, García y Santos C, Iglesias T et al (2009) Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int J Hydrog Energy 34:5674–5682. https://doi.org/10.1016/j.ijhydene.2009.05.060

    Article  CAS  Google Scholar 

  36. Song J, An D, Ren N et al (2011) Effects of pH and ORP on microbial ecology and kinetics for hydrogen production in continuously dark fermentation. Bioresour Technol 102:10875–10880. https://doi.org/10.1016/j.biortech.2011.09.024

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Zhang T, Fang HHP (2006) Fermentative hydrogen production in packed-bed and packaging-free upflow reactors. Water Sci Technol 54:95–103. https://doi.org/10.2166/wst.2006.712

    Article  CAS  PubMed  Google Scholar 

  38. Luo Y, Zhang H, Salerno M et al (2008) Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production. Int J Hydrog Energy 33:6566–6576. https://doi.org/10.1016/j.ijhydene.2008.08.047

    Article  CAS  Google Scholar 

  39. Bonin AS, Boone DR (2006) The order methanobacteriales characteristics of methanobacteriales. Prokaryotes 3:231–243. https://doi.org/10.1007/0-387-30743-5_11

    Article  Google Scholar 

  40. da Silva AN, Macêdo WV, Sakamoto IK et al (2019) Biohydrogen production from dairy industry wastewater in an anaerobic fluidized-bed reactor. Biomass Bioenerg 120:257–264. https://doi.org/10.1016/j.biombioe.2018.11.025

    Article  CAS  Google Scholar 

  41. Zhao C, Karakashev D, Lu W et al (2010) Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 °C) mixed culture. Int J Hydrog Energy 35:3415–3422. https://doi.org/10.1016/j.ijhydene.2010.01.082

    Article  CAS  Google Scholar 

  42. Maintinguer SI, Sakamoto IK, Adorno MAT, Varesche MBA (2015) Bacterial diversity from environmental sample applied to bio-hydrogen production. Int J Hydrog Energy 40:3180–3190. https://doi.org/10.1016/j.ijhydene.2014.12.118

    Article  CAS  Google Scholar 

  43. Abreu AA, Alves JI, Pereira MA et al (2011) Strategies to suppress hydrogen-consuming microorganisms affect macro and micro scale structure and microbiology of granular sludge. Biotechnol Bioeng 108:1766–1775. https://doi.org/10.1002/bit.23145

    Article  CAS  PubMed  Google Scholar 

  44. Marzorati M, Wittebolle L, Boon N et al (2008) How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environ Microbiol 10:1571–1581. https://doi.org/10.1111/j.1462-2920.2008.01572.x

    Article  CAS  PubMed  Google Scholar 

  45. Lebrero R, Rodríguez E, Pérez R et al (2013) Abatement of odorant compounds in one- and two-phase biotrickling filters under steady and transient conditions. Appl Microbiol Biotechnol 97:4627–4638. https://doi.org/10.1007/s00253-012-4247-1

    Article  CAS  PubMed  Google Scholar 

  46. Traversi D, Villa S, Lorenzi E et al (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manage 111:173–177. https://doi.org/10.1016/j.jenvman.2012.07.021

    Article  CAS  PubMed  Google Scholar 

  47. Maintinguer SI, Sakamoto IK, Adorno MAT, Varesche MBA (2016) Diversity of anaerobic bacteria in sediments from a subtropical reservoir. Lakes Reserv Res Manag 21:351–361. https://doi.org/10.1111/lre.12156

    Article  CAS  Google Scholar 

  48. Baloch MI, Akunna JC, Kierans M, Collier PJ (2008) Structural analysis of anaerobic granules in a phase separated reactor by electron microscopy. Bioresour Technol 99:922–929. https://doi.org/10.1016/j.biortech.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  49. Haosagul S, Vikromvarasiri N, Sawasdee V, Pisutpaisal N (2019) Impact of acetic acid in methane production from glycerol/acetic acid co-fermentation. Int J Hydrog Energy 44:29568–29574. https://doi.org/10.1016/j.ijhydene.2019.03.204

    Article  CAS  Google Scholar 

  50. Sittijunda S, Reungsang A (2017) Fermentation of hydrogen, 1,3-propanediol and ethanol from glycerol as affected by organic loading rate using up-flow anaerobic sludge blanket (UASB) reactor. Int J Hydrog Energy 42:27558–27569. https://doi.org/10.1016/j.ijhydene.2017.05.149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) under Grant 407298/2018-5 and 457144/2014-9; and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grant 2017/11767-1 and 2017/25329-6. The authors are also grateful to the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil” (CAPES) – Finance Code 001.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) under Grant 407298/2018–5 and 457144/2014–9; and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grant 2017/11767–1 and 2017/25329–6. The authors are also grateful to the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil” (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Luan Vieira Adames, Ana Paula Jacobus, and Isabel Sakamoto performed material preparation, data collection, and analysis. Sandra Imaculada Maintinguer and Lorena Oliveira Pires made funding acquisition, advising, and experimental outline. Luan Vieira Adames wrote the first draft of the manuscript. Discussion, English, and text revised by Carolina Zampol Lazaro. All authors commented on previous versions of the manuscript read and approved the final manuscript.

Corresponding author

Correspondence to Luan Vieira Adames.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 889 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adames, L.V., Jacobus, A.P., Sakamoto, I.K. et al. Bioenergy Recovery from Anaerobic Co-Digestion of Crude Glycerol and Domestic Sewage In-Series Reactor: Microbial Characterization and System Performance. Bioenerg. Res. 15, 2145–2158 (2022). https://doi.org/10.1007/s12155-022-10417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10417-1

Keywords

Navigation