Skip to main content
Log in

An Efficient Strategy for Enhancing Glucose Recovery of Wheat Straw by Ionic Liquid Combined Ball Milling Pretreatment

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The wheat straw (WS) recalcitrant nature resulting from its compositions and structures hinders the bioconversion of WS into glucose. In this study, a clean and efficient ionic liquid combined ball milling (IB) pretreatment was established to overcome structural barriers of WS, thus enhancing the accessibility and glucose recovery of WS. The proposed strategy has several advantages, including (i) the cellulose nanofibers (CNF) were directly obtained from WS by means of ionic liquid pretreatment; (ii) the dense fiber structure of CNF was rapidly destroyed by ball milling, thus increasing the cellulose accessibility; and (iii) the method can realize the fractionation of cellulose, hemicellulose, and lignin under mild process. Under optimal conditions, a maximal of 89.3% delignification and 92.5% hemicellulose removal was obtained with IB pretreatment, leading to glucose yield of 6.75 times that of raw WS. The samples before and after pretreatment were characterized by FTIR, TGA, XRD, SEM, and TEM. The results clearly confirmed that IB pretreatment could simultaneously remove lignin and hemicellulose, reduce the cellulose crystallinity, and change the morphology of cellulose, resulting in higher glucose yield.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ude MU, Oluka I, Eze PC (2020) Optimization and kinetics of glucose production via enzymatic hydrolysis of mixed peels. J Bioresour Bioprod 5:283–290. https://doi.org/10.1016/j.jobab.2020.10.007

    Article  CAS  Google Scholar 

  2. Patel A, Shah AR (2021) Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod 6:108–128. https://doi.org/10.1016/j.jobab.2021.02.001

    Article  CAS  Google Scholar 

  3. Abuhay A, Mengie W, Tesfaye T, Gebino G, Ayele M, Haile A, Yillie D (2021) Opportunities for new biorefinery products from Ethiopian Ginning Industry by-products: current status and prospects. J Bioresour Bioprod 6:195–214. https://doi.org/10.1016/j.jobab.2021.04.001

    Article  Google Scholar 

  4. Hongmei Chen JZ, Tianhang Hu, Zhao X, Liu D (2015) A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw substrate digestibility, fermentability and structural features. Appl Energy 150:224–232. https://doi.org/10.1016/j.apenergy.2015.04.030

  5. Hossain MM, Rawal A, Aldous L (2019) Aprotic vs protic ionic liquids for lignocellulosic biomass pretreatment: anion effects, enzymatic hydrolysis, solid-state NMR, distillation, and recycle. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b05987

    Article  Google Scholar 

  6. Hashmi M, Sun Q, Tao J, Wells T Jr, Shah AA, Labbe N, Ragauskas AJ (2017) Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Bioresour Technol 224:714–720. https://doi.org/10.1016/j.biortech.2016.10.089

    Article  CAS  PubMed  Google Scholar 

  7. Li HY, Chen X, Wang CZ, Sun SN, Sun RC (2016) Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: chemical and anatomical changes. Biotechnol Biofuels 9:166. https://doi.org/10.1186/s13068-016-0578-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang G, Zhang S, Xu W, Qi W, Yan Y, Xu Q (2015) Efficient saccharification by pretreatment of bagasse pith with ionic liquid and acid solutions simultaneously. Energy Convers Manag 89:120–126. https://doi.org/10.1016/j.enconman.2014.09.029

    Article  CAS  Google Scholar 

  9. Jiang L-Q, Fang Z, Li X-K, Luo J, Fan S-P (2013) Combination of dilute acid and ionic liquid pretreatments of sugarcane bagasse for glucose by enzymatic hydrolysis. Process Biochem 48:1942–1946. https://doi.org/10.1016/j.procbio.2013.09.012

  10. Uju AK, Uemura N, Oshima T, Goto M, Kamiya N (2013) Peracetic acid-ionic liquid pretreatment to enhance enzymatic saccharification of lignocellulosic biomass. Bioresour Technol 138:87–94. https://doi.org/10.1016/j.biortech.2013.03.147

    Article  CAS  PubMed  Google Scholar 

  11. Hammerer F, Loots L, Do JL, Therien JPD, Nickels CW, Friscic T, Auclair K (2018) Solvent-free enzyme activity: quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angew Chem Int Ed 57:2621–2624. https://doi.org/10.1002/anie.201711643

    Article  CAS  Google Scholar 

  12. Jiang LQ, Lin Q, Lin Y, Xu FX, Zhang X, Zhao ZL, Li HB (2020) Impact of ball-milling and ionic liquid pretreatments on pyrolysis kinetics and behaviors of crystalline cellulose. Bioresour Technol 305:123044. https://doi.org/10.1016/j.biortech.2020.123044

    Article  CAS  PubMed  Google Scholar 

  13. Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24:2083–2093. https://doi.org/10.1007/s10570-017-1238-5

    Article  CAS  Google Scholar 

  14. Qu C, Kishimoto T, Ogita S, Hamada M, Nakajima N (2012) Dissolution and acetylation of ball-milled birch (Betula platyphylla) and bamboo (Phyllostachys nigra) in the ionic liquid [Bmim]Cl for HSQC NMR analysis. Holzforschung 66:607–614. https://doi.org/10.1515/hf.2011.186

    Article  CAS  Google Scholar 

  15. Wu Y, Ge S, Xia C, Mei C, Kim K-H, Cai L, Smith LM, Lee J, Shi SQ (2021) Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose. Renew Sustain Energy Rev 136:110442. https://doi.org/10.1016/j.rser.2020.110442

  16. Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616. https://doi.org/10.1016/j.carbpol.2015.07.079

    Article  CAS  PubMed  Google Scholar 

  17. Prasertsung I, Chutinate P, Watthanaphanit A, Saito N, Damrongsakkul S (2017) Conversion of cellulose into reducing sugar by solution plasma process (SPP). Carbohydr Polym 172:230–236. https://doi.org/10.1016/j.carbpol.2017.05.025

    Article  CAS  PubMed  Google Scholar 

  18. Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46. https://doi.org/10.1016/j.carbpol.2008.12.003

    Article  CAS  Google Scholar 

  19. Liu CG, Qin JC, Liu LY, Jin BW, Bai FW (2015) Combination of ionic liquid and instant catapult steam explosion pretreatments for enhanced enzymatic digestibility of rice straw. ACS Sustain Chem Eng 4:577–582. https://doi.org/10.1021/acssuschemeng.5b00990

    Article  CAS  Google Scholar 

  20. Kupiainen L, Ahola J, Tanskanen J (2012) Hydrolysis of organosolv wheat pulp in formic acid at high temperature for glucose production. Bioresour Technol 116:29–35. https://doi.org/10.1016/j.biortech.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  22. Tang W, Wu X, Huang C, Huang C, Lai C, Yong Q (2020) Humic acid-assisted autohydrolysis of waste wheat straw to sustainably improve enzymatic hydrolysis. Bioresour Technol 306:123103. https://doi.org/10.1016/j.biortech.2020.123103

    Article  CAS  PubMed  Google Scholar 

  23. Segal L, Creely JJ, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  24. Semerci I, Güler F (2018) Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Ind Crops Prod 125:588–595. https://doi.org/10.1016/j.indcrop.2018.09.046

    Article  CAS  Google Scholar 

  25. Hernandez Varela JD, Chanona Perez JJ, Calderon Benavides HA, Cervantes Sodi F, Vicente Flores M (2021) Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydr Polym 255:117347. https://doi.org/10.1016/j.carbpol.2020.117347

    Article  CAS  PubMed  Google Scholar 

  26. Xu JK, Sun YC, Sun RC (2015) Synergistic effects of ionic liquid plus alkaline pretreatments on eucalyptus: lignin structure and cellulose hydrolysis. Process Biochem 50:955–965. https://doi.org/10.1016/j.procbio.2015.03.014

    Article  CAS  Google Scholar 

  27. Liu L, Sun J, Li M, Wang S, Pei H, Zhang J (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 100:5853–5858. https://doi.org/10.1016/j.biortech.2009.06.040

    Article  CAS  PubMed  Google Scholar 

  28. Djafari Petroudy SR, Arjmand Kahagh S, Vatankhah E (2021) Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw. Carbohydr Polym 251:117087. https://doi.org/10.1016/j.carbpol.2020.117087

    Article  CAS  PubMed  Google Scholar 

  29. Mattonai M, Pawcenis D, Del Seppia S, Lojewska J, Ribechini E (2018) Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresour Technol 270:270–277. https://doi.org/10.1016/j.biortech.2018.09.029

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Zhu X, Deuss PJ (2021) The effect of ball milling on birch, pine, reed, walnut shell enzymatic hydrolysis recalcitrance and the structure of the isolated residual enzyme lignin. Ind Crops Prod 167:113493. https://doi.org/10.1016/j.indcrop.2021.113493

    Article  CAS  Google Scholar 

  31. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2007) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  32. Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363. https://doi.org/10.1016/j.indcrop.2015.07.006

    Article  CAS  Google Scholar 

  33. Seo DJ, Fujita H, Sakoda A (2011) Effects of a non-ionic surfactant, Tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17:813–822. https://doi.org/10.1007/s10450-011-9340-8

    Article  CAS  Google Scholar 

  34. Teixeira RS, da Silva AS, Kim HW, Ishikawa K, Endo T, Lee SH, Bon EP (2013) Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac]. Bioresour Technol 149:551–555. https://doi.org/10.1016/j.biortech.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  35. Sant’Ana da Silva A, Lee SH, Endo T, Bon EP (2011) Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]). Bioresour Technol 102:10505–10509. https://doi.org/10.1016/j.biortech.2011.08.085

    Article  CAS  PubMed  Google Scholar 

  36. Van Craeyveld V, Holopainen U, Selinheimo E, Poutanen K, Delcour JA, Courtin CM (2009) Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. J Agric Food Chem 57:8467–8473. https://doi.org/10.1021/jf901870r

    Article  CAS  PubMed  Google Scholar 

  37. Brandt Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102. https://doi.org/10.1039/c7gc00705a

    Article  CAS  Google Scholar 

  38. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489. https://doi.org/10.1039/c1gc15374a

    Article  CAS  Google Scholar 

  39. Seta FT, An X, Liu L, Zhang H, Yang J, Zhang W, Nie S, Yao S, Cao H, Xu Q, Bu Y, Liu H (2020) Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr Polym 234:115942. https://doi.org/10.1016/j.carbpol.2020.115942

    Article  CAS  PubMed  Google Scholar 

  40. Piras CC, Fernández-Prieto S, De Borggraeve WM (2019) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947. https://doi.org/10.1039/c8na00238j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmatz AA, Brienzo M (2021) Butylated hydroxytoluene improves lignin removal by organosolv pretreatment of sugarcane bagasse. Bioenergy Res. https://doi.org/10.1007/s12155-021-10317-w

    Article  Google Scholar 

  42. Yuan Z, Li G, Hegg EL (2018) Enhancement of sugar recovery and ethanol production from wheat straw through alkaline pre-extraction followed by steam pretreatment. Bioresour Technol 266:194–202. https://doi.org/10.1016/j.biortech.2018.06.065

    Article  CAS  PubMed  Google Scholar 

  43. Joy SP, Krishnan C (2022) Modified organosolv pretreatment for improved cellulosic ethanol production from sorghum biomass. Ind Crops Prod 177:114409. https://doi.org/10.1016/j.indcrop.2021.114409

    Article  CAS  Google Scholar 

  44. Gong C, Thomsen ST, Meng X, Pu Y, Puig-Arnavat M, Bryant N, Bhagia S, Felby C, Ragauskas AJ, Thygesen LG (2021) Effects of different pelleting technologies and parameters on pretreatment and enzymatic saccharification of lignocellulosic biomass. Renew Energy 179:2147–2157. https://doi.org/10.1016/j.renene.2021.08.039

    Article  CAS  Google Scholar 

  45. Huang Y, Chu Q, Tong W, Wu S, Jin Y, Hu J, Song K (2021) Carbocation scavenger assisted acid pretreatment followed by mild alkaline hydrogen peroxide (AHP) treatment for efficient production of fermentable sugars and lignin adsorbents from hardwood biomass. Ind Crops Prod 170:113737. https://doi.org/10.1016/j.indcrop.2021.113737

    Article  CAS  Google Scholar 

  46. Trinh LTP, Lee YJ, Park CS, Bae HJ (2019) Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation. J Ind Eng Chem 69:57–65. https://doi.org/10.1016/j.jiec.2018.09.008

    Article  CAS  Google Scholar 

  47. Guan M, Liu Q, Xin H, Jiang E, Ma Q (2021) Enhanced glucose production from cellulose and corn stover hydrolysis by molten salt hydrates pretreatment. Fuel Process Technol 215:106739. https://doi.org/10.1016/j.fuproc.2021.106739

    Article  CAS  Google Scholar 

  48. Yu X, Bao X, Zhou C, Zhang L, Yagoub AEGA, Yang H, Ma H (2018) Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose. Ultrason Sonochem 41:410–418. https://doi.org/10.1016/j.ultsonch.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  49. Zhao Z, Chen X, Ali MF, Abdeltawab AA, Yakout SM, Yu G (2018) Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour Technol 263:325–333. https://doi.org/10.1016/j.biortech.2018.05.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 21876062) and the Key R&D Program of Shandong Province (no. 2019GSF109071).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design: Guoxin Sun, Ying Sui; methodology: Ying Sui, Yiming Zhao; formal analysis and investigation: Ying Sui, Yuanxiu Wang; writing (original draft preparation): Ying Sui; writing (review and editing): Yu Cui, Guoxin Sun; Supervision: Guoxin Sun.

Corresponding author

Correspondence to Guoxin Sun.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Y., Cui, Y., Wang, Y. et al. An Efficient Strategy for Enhancing Glucose Recovery of Wheat Straw by Ionic Liquid Combined Ball Milling Pretreatment. Bioenerg. Res. 15, 1933–1945 (2022). https://doi.org/10.1007/s12155-022-10404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10404-6

Keywords

Navigation