Skip to main content

Advertisement

Log in

Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The rapid development of large-scale aquaculture leads to wastewater accumulation, increasing environmental problems. Microalga cultivation is a potential biotechnological alternative to treat aquaculture wastewater. While this microorganism consumes the wastewater nutrients, high added value biomass is produced. The role of Spirulina in aquaculture wastewater treatment is not fully elucidated in the literature. Thus, this study aimed to reuse and treat aquaculture wastewater by Spirulina sp. LEB 18 cultures. The microalga growth parameters, the biochemical composition of the biomass produced, and the Spirulina efficiency to nutrient removal from the aquaculture wastewater were evaluated. The assays were performed in closed photobioreactors (1 L) using 100% aquaculture wastewater (T-0) supplemented with 25 (T-25), 50 (T-50), and 75% (T-75) of the Zarrouk synthetic culture medium. The maximum biomass concentrations showed no statistical difference between the assays T-50 (1.02 g L−1), T-25 (1.10 g L−1), and control (1.05 g L−1). The biomass from the T-25 assay showed the highest concentrations of protein (65.73%), phycocyanin (16.60 mg/mL), polyunsaturated fatty acid (38.20%), and γ-linolênico (23.29%). Besides that, the Spirulina sp. LEB 18 highest removal rate of sulfate (94.01%), phosphate (93.84%), bromine (96.77%), and COD (90.00%) was obtained from the T-25 assay. The biomass from T-25 and T-50 assays showed ideal properties for biodiesel application. The Spirulina sp. LEB 18 cultures using 100% aquaculture wastewater supplemented with 25% of Zarrouk culture medium was the best option for the aquaculture wastewater treatment, producing added value biomass and reducing production cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO (2018) Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Rome:223

  2. Wuang SC, Khin MC, Chua PQD, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Microalgae Res 15:59–64. https://doi.org/10.1016/j.algal.2016.02.009

    Article  Google Scholar 

  3. Ferreira JG, Falconer L, Kittiwanich J, Ross L, Saurel C, Wellman K, Zhu CB, Suvanachai P (2015) Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquac Res 447:23–36. https://doi.org/10.1016/j.aquaculture.2014.08.042

    Article  Google Scholar 

  4. Fitwi BS, Wuertz S, Schroeder JP, Schulz C (2012) Sustainability assessment tools to support aquaculture development. Aquac Res 32:183–192. https://doi.org/10.1016/j.jclepro.2012.03.037

    Article  Google Scholar 

  5. Martins AP, Zambotti-Villela L, Yokoya NS, Colepicolo P (2018) Biotechnological potential of benthic marine algae collected along the Brazilian coast. Microalgae Res 33:316–327. https://doi.org/10.1016/j.algal.2018.05.008

    Article  Google Scholar 

  6. Huang Y, Chen Y, Xie I, Liu H, Yin X, Wu C (2016) Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel 183:9–19. https://doi.org/10.1016/j.fuel.2016.06.013

    Article  CAS  Google Scholar 

  7. Markou G, Chatzipavlidis I, Georgakakis D (2012) Cultivation of Arthrospira (Spirulina platensis) in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour Technol 112:234–241. https://doi.org/10.1016/j.biortech.2012.02.098

    Article  CAS  PubMed  Google Scholar 

  8. Alva MS, Pabella VML, Ledesma MTO, Gómez MJC (2018) Carbon, nitrogen, and phosphorus removal, and lipid production by three saline microalgae grown in synthetic wastewater irradiated with different photon fluxes. Microalgae Res 34:97–103. https://doi.org/10.1016/j.algal.2018.07.006

    Article  Google Scholar 

  9. Kuo C, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS (2015) Cultivation of Chlorella sp., GD using piggery wastewater for biomass and lipid production. Bioresour Technol 194:326–333. https://doi.org/10.1016/j.biortech.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  10. Salama E, Jeon BH, Chang SW, Lee SH, Roh HS, Yang S, Kurade MB, El-Dalatony MM, Kim KH, Kim S (2017) Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J Clean 168:1017–1024. https://doi.org/10.1016/j.jclepro.2017.09.057

    Article  CAS  Google Scholar 

  11. Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Pei H, Yang Z, Wang X, Chen S, Li Y, Xie Z (2019) Microalgae nourished by mariculture wastewater aids aquaculture self-reliance with desirable biochemical composition. Bioresour Technol 278:205–213. https://doi.org/10.1016/j.biortech.2019.01.066

    Article  CAS  PubMed  Google Scholar 

  13. Andrade BB, Cardoso LG, Assis DJ, Costa JAV, Druzian JI, Lima STC (2019) Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk’s medium in a raceway-type bioreactor. Bioresour Technol 284:340–348. https://doi.org/10.1016/j.biortech.2019.03.144

    Article  CAS  PubMed  Google Scholar 

  14. Duarte JH, Cardoso LG, Souza CO, Nunes IL, Druzian JI, Morais MG, Costa JAV (2019) Brackish groundwater from Brazilian backlands in Spirulina cultures: potential of carbohydrate and polyunsaturated fatty acid production. Appl Biochem Biotechnol 190:907–917. https://doi.org/10.1007/s12010-019-03126-7

    Article  CAS  PubMed  Google Scholar 

  15. Mata SN, Cardoso LG, Andrade BB, Duarte JH, Costa JAV, Druzian JI (2020) Spirulina sp. LEB 18 cultivation in a raceway-type bioreactor using wastewater from desalination process: production of carbohydrate-rich biomass. Bioresour Technol 311:–123495. https://doi.org/10.1016/j.biortech.2020.123495

  16. Costa JAV, Colla LM, Filho PD, Kabke K, Weber A (2004) Modelling of Spirulina platensis growth in fresh water using response surface methodology. J Microbiol Biotechnol 18:603–607. https://doi.org/10.1023/A:1016822717583

    Article  Google Scholar 

  17. Daneshvar E, Antikainen L, Koutra E, Kornaros M, Bhatnagar A (2018) Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresour Technol 255:104–110. https://doi.org/10.1016/j.biortech.2018.01.101

    Article  CAS  PubMed  Google Scholar 

  18. American Public Health Association (2005) Standard methods for the examination of water and wastewater. APHA, Washington

    Google Scholar 

  19. Soares SAR, Costa CR, Araujo RGO, Zucchi MR, Celino JJ, Teixeira LSG (2015) Determination of polycyclic aromatic hydrocarbons in groundwater samples by gas chromatography-mass spectrometry after pre-concentration using cloud-point extraction with surfactant Derivatization. J Braz Chem Soc 26:955–962. https://doi.org/10.5935/0103-5053.20150057

    Article  CAS  Google Scholar 

  20. Ramsundar P, Abhishek G, Singh P, Pillay K, Bux F (2017) Evaluation of water activated sludge as a potential nutrient source for cultivation of Chlorella sorokiniana. Microalgae Res 28:108–117. https://doi.org/10.1016/j.algal.2017.10.006

    Article  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. Int J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  23. Nascimento IA, Marques SSI, Cabanelas ITD, Carvalho GC, Nascimento MA, Souza CO, Druzian JI, Hussain J, Liao W (2014) Microalgae versus land crops as feedstock for biodiesel: productivity, quality and standard compliance. Bioenergy Res 7:1002–1013. https://doi.org/10.1007/s12155-014-9440-x

    Article  CAS  Google Scholar 

  24. Zhang L, Cheng J, Pei H, Pan J, Jiang L, Hou Q, Han F (2018) Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renew Energy 115:276–287. https://doi.org/10.1016/j.renene.2017.08.034

    Article  CAS  Google Scholar 

  25. Milhazes-Cunha H, Otero A (2017) Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal Res 24:416–424. https://doi.org/10.1016/j.algal.2016.12.011

    Article  Google Scholar 

  26. Malibari R, Sayegh F, Elazzazy AM, Baeshen MN, Dourou M, Aggelis G (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea e Jeddah. J Clean 198:160–169. https://doi.org/10.1016/j.jclepro.2018.07.037

    Article  CAS  Google Scholar 

  27. Ansari FA, Singh P, Guldhe A, Bux F (2017) Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Res 21:169–177. https://doi.org/10.1016/j.algal.2016.11.015

    Article  Google Scholar 

  28. Mohammadi M, Mowla D, Esmaeilzadeh F, Ghasemi Y (2019) Enhancement of sulfate removal from the power plant wastewater using cultivation of indigenous microalgae: stage-wise operation. J Environ Chem Eng 7:102870. https://doi.org/10.1016/j.jece.2018.102870

    Article  CAS  Google Scholar 

  29. Krishnamoorthya S, Manickam M, Muthukaruppanb V (2019) Evaluation of distillery wastewater treatability in a customized photobioreactor using blue-green microalgae – laboratory and outdoor study. J Environ Manag 234:412–423. https://doi.org/10.1016/j.jenvman.2019.01.014

    Article  CAS  Google Scholar 

  30. Lu W, Alam MA, Luo W, Asmatulu E (2019) Integrating Spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production. Bioresour Technol 271:59–65. https://doi.org/10.1016/j.biortech.2018.09.082

    Article  CAS  PubMed  Google Scholar 

  31. Yang F, Xiang W, Fan J, Wu H, Li T, Long L (2016) High pH-induced flocculation of marine Chlorella sp. for biofuel production. J Appl Psychol 28:747–756. https://doi.org/10.1007/s10811-015-0576-7

    Article  CAS  Google Scholar 

  32. Egloff S, Tschudi F, Schmautz Z, Refardt D (2018) High-density cultivation of microalgae continuously fed with unfiltered water from a recirculating aquaculture system. Microalgae Res 34:68–74. https://doi.org/10.1016/j.algal.2018.07.004

    Article  Google Scholar 

  33. Zeng X, Danquah MK, Zhang S, Zhang X, Wu M, Chen XD, Ng IS, Jiang K, Lu Y (2012) Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem Eng Process 183:192–197. https://doi.org/10.1016/j.cej.2011.12.062

    Article  CAS  Google Scholar 

  34. Perez-garcia O, Escalante FME, Bashan LE, Bashan Y (2010) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. https://doi.org/10.1016/j.watres.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  35. Barros MP, Marin DP, Bolin AP, Macedo RCS, Compoio TR, Fineto CJ, Guerra BA, Polotow TG, Vardaris C, Mattei R, Otton R (2012) Combined astaxanthin and fish oil supplementation improves glutathione-based redox balance in rat plasma and neutrophils. Chem Biol Interact 197:58–67. https://doi.org/10.1016/j.cbi.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  36. Vardon DR, Sharma BK, Scott J, Yu G, Wang Z, Schideman L, Zhang Y, Strathmann T (2011) Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour Technol 102:8295–8303. https://doi.org/10.1016/j.biortech.2011.06.041

    Article  CAS  PubMed  Google Scholar 

  37. Nam K, Lee H, Heo SW, Chang YK, Han JI (2016) Cultivation of Chlorella vulgaris with swine wastewater and potential for microalgae biodiesel production. J Appl Psychol 29:1171–1178. https://doi.org/10.1007/s10811-016-0987-0

    Article  CAS  Google Scholar 

  38. Guihéneuf F, Stengel D (2013) LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs 11:4246–4266. https://doi.org/10.3390/md11114246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santos C, Uebel LS, Costa SS, Miranda AL, Morais EG, Morais MG, Costa JAV, Nunes IL, Ferreira ES, Druzian JI (2018) Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour Technol 256:86–94. https://doi.org/10.1016/j.biortech.2018.01.149

    Article  CAS  Google Scholar 

  40. Tripathi R, Singh J, Thakur IS (2015) Characterization of microalgae Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production. Renew. Energy 74:774–781. https://doi.org/10.1016/j.renene.2014.09.005

    Article  CAS  Google Scholar 

  41. Resolution from Brazilian National Agency for Petroleum, Natural Gas and Biofuels (2008) http://www.anp.gov.br. Accessed November 2019

  42. UNE-EN 14104 (2003). Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of acid value and cold filter plugging point

  43. Arias-Penarands MT, Cristiani-Urbina E, Montes-Horcasitas C, Esparza-Garcia F, Torzillo G, Canizares-Villanuera RO (2013) Scenedesmus incrassatulus CLHE-Si01: a potential source of renewable lipid for high quality biodiesel production. Bioresour Technol 140:158–164. https://doi.org/10.1016/j.biortech.2013.04.080

    Article  CAS  Google Scholar 

  44. Jawaharraj K, Karpagam R, Ashokkumar B, Pratheeba CN, Varalakshmi P (2016) Enhancement of biodiesel potential in cyanobacteria: using agroindustrial wastes for fuel production, properties and acetyl CoA carboxylase D (accD) gene expression of Synechocystis sp.NN. Renew Energy 98:72–77. https://doi.org/10.1016/j.renene.2016.02.038

    Article  CAS  Google Scholar 

  45. Sumprasit N, Wagle N, Glanpracha N, Annachhatre AP (2017) Biodiesel and biogas recovery from Spirulina platensis. Int Biodeterior Biodegradation 119:196–204. https://doi.org/10.1016/j.ibiod.2016.11.006

    Article  CAS  Google Scholar 

  46. Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403. https://doi.org/10.1002/jctb.2338

    Article  CAS  Google Scholar 

  47. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070. https://doi.org/10.1016/j.fuproc.2004.11.002

    Article  CAS  Google Scholar 

  48. Knothe GH (2006) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677. https://doi.org/10.1016/j.fuproc.2007.01.005

    Article  CAS  Google Scholar 

  49. Deshmukha S, Kumar S, Bala K (2019) Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process Technol 191:232–247. https://doi.org/10.1016/j.fuproc.2019.03.013

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the FAPESB—Foundation for Research Support of Bahia to project CNPQ (400710/2014-5) and by the MCTIC (Ministry of Technological Information and Communication Science)—Brazil and Bahia Pesca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Guimarães Cardoso.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Spirulina sp. LEB 18 showed maximum biomass concentration in 100% wastewater aquaculture with 25% of Zarrouk (1.10 g L−1);

• Biomass production with higher values of protein (65.73%) and phycocyanin (16.60 mg/mL);

• High levels of polyunsaturated fatty acids (38.20%) and C18:3n6 (38.20%);

• High removal rates 94.01% (sulfate s); 93.84% (Phosphate); 96.77% (Bromine) and 90.00% (COD);

• T-25 treatment with quality biodiesel properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, L.G., Duarte, J.H., Costa, J.A.V. et al. Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel. Bioenerg. Res. 14, 254–264 (2021). https://doi.org/10.1007/s12155-020-10153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10153-4

Keywords

Navigation