Skip to main content

Advertisement

Log in

Effect of Sludge Retention Time on Biomass Production and Nutrient Removal at an Algal Membrane Photobioreactor

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this study, the effect of sludge retention time (SRT) on biomass production and nutrient removal was determined by constant hydraulic retention time (HRT) with mixed microalgae culture. The SRTs of 2, 3, 6, 12, and 24 days with constant 24 h HRT were studied in microalgae membrane photobioreactor (msMpBR) by using hollow fiber (HF) membranes with a pore diameter of 0.45 μm. According to the results, the best removal was achieved within 3 days of SRT. Chlorophyll-a/mixed liquor suspended solid (MLSS) ratios were found to be 0.033. Total nitrogen (TN) and phosphate phosphorus (PO4–P) removal rates were found to be 5.55 mg N/L day−1, and 0.4 mg PO4–P/L day−1, respectively. The volumetric microalgae production was found to be 0.118 g/L day−1. Also, Chaetophora sp. and Navicula sp. cultures were found to be dominant in steady state. The percentage of lipid and protein in dry biomass was obtained to be 8.94% and 30.34%, respectively. It is advisable to use algal membrane photobioreactor, and mixed microalgae cultures instead of specific microalgae cultures, which could be readily affected by seasonal changes and outdoor conditions in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shahnazari M, Bahri PA, Parlevliet D, Minakshi M, Moheimani NR (2017) Sustainable conversion of light to algal biomass and electricity: a net energy return analysis. Energy 131:218–229. https://doi.org/10.1016/j.energy.2017.04.162

    Article  Google Scholar 

  2. Khanzada ZT, Övez S (2017) Microalgae as a sustainable biological system for improving leachate quality. Energy 140:757–765

    Article  CAS  Google Scholar 

  3. Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 92:70–75

    Article  CAS  Google Scholar 

  4. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  PubMed  Google Scholar 

  5. De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627

    Article  CAS  PubMed  Google Scholar 

  6. Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  7. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  8. Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291

    Article  Google Scholar 

  9. Molinuevo-Salces B, Mahdy A, Ballesteros M, González-Fernández C (2016) From piggery wastewater nutrients to biogas: microalgae biomass revalorization through anaerobic digestion. Renew Energy 96:1103–1110

    Article  CAS  Google Scholar 

  10. Wang L, Li Y, Sommerfeld M, Hu Q (2013) A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresour Technol 129:289–295

    Article  CAS  PubMed  Google Scholar 

  11. Chang Y, Wu Z, Bian L, Feng D, Leung DY (2013) Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Appl Energy 102:427–431

    Article  CAS  Google Scholar 

  12. Ra CH, Kang C-H, Kim NK, Lee C-G, Kim S-K (2015) Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renew Energy 80:117–122

    Article  CAS  Google Scholar 

  13. Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO 2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Process Intensif 48(1):306–310

    Article  CAS  Google Scholar 

  14. Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388

    Article  CAS  Google Scholar 

  15. Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102(1):101–105

    Article  CAS  PubMed  Google Scholar 

  16. Ruiz-Martínez A, Serralta J, Romero I, Seco A, Ferrer J (2015) Effect of intracellular P content on phosphate removal in Scenedesmus sp. experimental study and kinetic expression. Bioresour Technol 175:325–332

    Article  CAS  PubMed  Google Scholar 

  17. Singh G, Thomas PB (2012) Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour Technol 117:80–85

    Article  CAS  PubMed  Google Scholar 

  18. Gao F, Yang Z-H, Li C, Zeng G-M, Ma D-H, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    Article  CAS  PubMed  Google Scholar 

  19. Gao F, Li C, Yang Z-H, Zeng G-M, Feng L-J, J-z L, Liu M, H-w C (2016) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng 92:55–61

    Article  Google Scholar 

  20. Honda R, Boonnorat J, Chiemchaisri C, Chiemchaisri W, Yamamoto K (2012) Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresour Technol 125:59–64

    Article  CAS  PubMed  Google Scholar 

  21. Gao F, Yang Z-H, Li C, Wang Y-j, W-h J, Deng Y-b (2014) Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresour Technol 167:441–446

    Article  CAS  PubMed  Google Scholar 

  22. Selvaratnam T, Henkanatte-Gedera S, Muppaneni T, Nirmalakhandan N, Deng S, Lammers P (2016) Maximizing recovery of energy and nutrients from urban wastewaters. Energy 104:16–23

    Article  CAS  Google Scholar 

  23. Naraharisetti PK, Das P, Sharratt PN (2017) Critical factors in energy generation from microalgae. Energy 120:138–152

    Article  CAS  Google Scholar 

  24. APHA/AWWA/WEF (2012) Standard methods for the examination of water and wastewater. ISBN 9780875532356

  25. Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University Press, Cambridge

    Google Scholar 

  26. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  27. Tang T, Hu Z (2016) A comparison of algal productivity and nutrient removal capacity between algal CSTR and algal MBR at the same light level under practical and optimal conditions. Ecol Eng 93:66–72

    Article  Google Scholar 

  28. Kang D, Kim K, Jang Y, Moon H, Ju D, Jahng D (2018) Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light. Int Biodeterior Biodegrad 126:10–20

    Article  CAS  Google Scholar 

  29. Ji F, Liu Y, Hao R, Li G, Zhou Y, Dong R (2014) Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresour Technol 161:200–207

    Article  CAS  PubMed  Google Scholar 

  30. Xu M, Li P, Tang T, Hu Z (2015) Roles of SRT and HRT of an algal membrane bioreactor system with a tanks-in-series configuration for secondary wastewater effluent polishing. Ecol Eng 85:257–264

    Article  Google Scholar 

  31. Marbelia L, Bilad MR, Passaris I, Discart V, Vandamme D, Beuckels A, Muylaert K, Vankelecom IF (2014) Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresour Technol 163:228–235

    Article  CAS  PubMed  Google Scholar 

  32. Choi H (2015) Intensified production of microalgae and removal of nutrient using a microalgae membrane bioreactor (MMBR). Appl Biochem Biotechnol 175(4):2195–2205

    Article  CAS  PubMed  Google Scholar 

  33. Gao F, Peng Y-Y, Li C, Cui W, Yang Z-H, Zeng G-M (2018) Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): effect of HRT and long-term operation. Chem Eng J 335:169–175

    Article  CAS  Google Scholar 

  34. Ji Y, Hu W, Li X, Ma G, Song M, Pei H (2014) Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresour Technol 152:471–476

    Article  CAS  PubMed  Google Scholar 

  35. Komolafe O, Orta SBV, Monje-Ramirez I, Noguez IY, Harvey AP, Ledesma MTO (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304

    Article  CAS  PubMed  Google Scholar 

  36. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  37. Hadj-Romdhane F, Jaouen P, Pruvost J, Grizeau D, Van Vooren G, Bourseau P (2012) Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresour Technol 123:366–374

    Article  CAS  PubMed  Google Scholar 

  38. Praveen P, Loh K-C (2016) Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor. Bioresour Technol 206:180–187

    Article  CAS  PubMed  Google Scholar 

  39. Olsson J, Feng XM, Ascue J, Gentili FG, Shabiimam M, Nehrenheim E, Thorin E (2014) Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Bioresour Technol 171:203–210

    Article  CAS  PubMed  Google Scholar 

  40. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101(1):58–64

    Article  CAS  PubMed  Google Scholar 

  41. Valenzuela-Espinoza E, Millán-Núñez R, Núñez-Cebrero F (2002) Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquac Eng 25(4):207–216

    Article  Google Scholar 

  42. Lam MK, Yusoff MI, Uemura Y, Lim JW, Khoo CG, Lee KT, Ong HC (2017) Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew Energy 103:197–207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to express my special thanks of gratitude to Aksaray University (BAP Project No: 2015-043), Kayseri Organized Industrial Zone Management, and Dr. Murat KAYA of Aksaray University, Biotechnology and Molecular Biology Department because of their contributions and supports in defining the species in mixed cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Solmaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solmaz, A., Işik, M. Effect of Sludge Retention Time on Biomass Production and Nutrient Removal at an Algal Membrane Photobioreactor. Bioenerg. Res. 12, 197–204 (2019). https://doi.org/10.1007/s12155-019-9961-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-9961-4

Keywords

Navigation