Skip to main content

Advertisement

Log in

Characterization of Biomass Briquettes from Spent Coffee Grounds and Xanthan Gum Using Low Pressure and Temperature

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This paper analyzes the ability of the SCG for briquettes production based on the use of xanthan gum as binder under low-pressure and low-temperature biomass manufacturing conditions. Briquettes were manufactured at room temperature, at 10, 15, 20, 25, and 30% of moisture content and 8, 10, and 12 MPa of compaction pressure. Raw SCG samples reached dry densities between 0.669 and 0.735 g/cm3 for the samples with a moisture content of 15% and 8 MPa and 10% and 12 MPa, respectively. Samples treated with 10% of xanthan gum got densities between 0.672 and 0.819 g/cm3 depending on the moisture content and the compaction pressure. No one of the raw SCG combinations passed the durability test meanwhile xanthan ones with 30% of moisture content obtained the best results with a loss of mass of 9.1% for the combination compacted at 10 MPa. Raw SCG samples showed water absorption values between 0.498% and 0.846%, meanwhile xanthan samples water absorption oscillated between 0.427% and 1.065%. Xanthan gum increased the SCG ashes content from 0.66% to 0.97% and decreased the lower heating value (LHV) from 25,399 J/g of the pure raw SCG to 23,503 J/g. Thermogravimetric tests showed that xanthan gum mix compared to the raw SCG increased as well the volatile peak from 61.54 mW to 81.94 mW as the mass loss rate in the volatile stage from −0.0178 mg/s to −0.0184 mg/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peshev D, Mitev D, Peeva L, Peev G (2018) Valorization of spent coffee grounds – a new approach. Sep Purif Technol 192:271–277. https://doi.org/10.1016/j.seppur.2017.10.021

    Article  CAS  Google Scholar 

  2. International Coffee Organization (2018) Coffee market recovers slightly from December slump. In: http://www.ico.org/. http://www.ico.org/

  3. Gómez-De La Cruz FJ, Cruz-Peragón F, Casanova-Peláez PJ, Palomar-Carnicero JM (2015) A vital stage in the large-scale production of biofuels from spent coffee grounds: the drying kinetics. Fuel Process Technol 130:188–196. https://doi.org/10.1016/j.fuproc.2014.10.012

    Article  CAS  Google Scholar 

  4. Santos C, Fonseca J, Aires A, Coutinho J, Trindade H (2017) Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Manag 59:37–47. https://doi.org/10.1016/j.wasman.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  5. Limousy L, Jeguirim M, Dutournié P et al (2013) Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107:323–329. https://doi.org/10.1016/j.fuel.2012.10.019

    Article  CAS  Google Scholar 

  6. Mata TM, Martins AA, Caetano NS (2018) Bio-refinery approach for spent coffee grounds valorization. Bioresour Technol 247:1077–1084. https://doi.org/10.1016/j.biortech.2017.09.106

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Liu J, He Y, Huang L, Sun S, Sun J, Chang K, Kuo J, Huang S, Ning X (2017) Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresour Technol 225:234–245. https://doi.org/10.1016/j.biortech.2016.11.069

    Article  CAS  PubMed  Google Scholar 

  8. Kourmentza C, Economou CN, Tsafrakidou P, Kornaros M (2018) Spent coffee grounds make much more than waste: exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. J Clean Prod 172:980–992. https://doi.org/10.1016/j.jclepro.2017.10.088

    Article  Google Scholar 

  9. Zuorro A, Lavecchia R (2012) Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. J Clean Prod 34:49–56. https://doi.org/10.1016/j.jclepro.2011.12.003

    Article  CAS  Google Scholar 

  10. Allesina G, Pedrazzi S, Allegretti F, Tartarini P (2017) Spent coffee grounds as heat source for coffee roasting plants: experimental validation and case study. Appl Therm Eng 126:730–736. https://doi.org/10.1016/j.applthermaleng.2017.07.202

    Article  Google Scholar 

  11. Goglio P, Smith WN, Worth DE, et al (2017) Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems a Canadian scenario assessment.pdf. J Clean Prod 1–11. https://doi.org/10.1016/j.jclepro.2017.06.175

  12. Karmee SK (2017) A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manag 72:240–254. https://doi.org/10.1016/j.wasman.2017.10.042

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Sun X (2017) Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresour Technol 245:152–161. https://doi.org/10.1016/j.biortech.2017.08.147

    Article  CAS  PubMed  Google Scholar 

  14. Mussatto SI, Carneiro LM, Silva JPA et al (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr Polym 83:368–374. https://doi.org/10.1016/j.carbpol.2010.07.063

    Article  CAS  Google Scholar 

  15. Haile M (2014) Integrated volarization of spent coffee grounds to biofuels. Biofuel Res J 1:65–69. https://doi.org/10.18331/BRJ2015.1.2.6

    Article  CAS  Google Scholar 

  16. Kang SB, Oh HY, Kim JJ, Choi KS (2017) Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW). Renew Energy 113:1208–1214. https://doi.org/10.1016/j.renene.2017.06.092

    Article  CAS  Google Scholar 

  17. Chou CS, Lin SH, Peng CC, Lu WC (2009) The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the Taguchi method. Fuel Process Technol 90:1041–1046. https://doi.org/10.1016/j.fuproc.2009.04.007

    Article  CAS  Google Scholar 

  18. Rajaseenivasan T, Srinivasan V, Syed Mohamed Qadir G, Srithar K (2016) An investigation on the performance of sawdust briquette blending with neem powder. Alexandria Eng J 55:2833–2838. https://doi.org/10.1016/j.aej.2016.07.009

    Article  Google Scholar 

  19. Kaliyan N, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33:337–359. https://doi.org/10.1016/j.biombioe.2008.08.005

    Article  CAS  Google Scholar 

  20. Muazu RI, Stegemann JA (2017) Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel 194:339–347. https://doi.org/10.1016/j.fuel.2017.01.019

    Article  CAS  Google Scholar 

  21. Shankar T, Christopher T, Wright JRH, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefin 5:683–707. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  22. Huang Y, Finell M, Larsson S et al (2017) Biofuel pellets made at low moisture content – influence of water in the binding mechanism of densified biomass. Biomass Bioenergy 98:8–14. https://doi.org/10.1016/j.biombioe.2017.01.002

    Article  CAS  Google Scholar 

  23. da Silva CMS, de CO CA, Vital BR et al (2018) Biomass torrefaction for energy purposes – definitions and an overview of challenges and opportunities in Brazil. Renew Sust Energ Rev 82:2426–2432. https://doi.org/10.1016/j.rser.2017.08.095

    Article  Google Scholar 

  24. Chen D, Gao A, Cen K et al (2018) Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers Manag 169:228–237. https://doi.org/10.1016/j.enconman.2018.05.063

    Article  CAS  Google Scholar 

  25. Kaur A, Roy M, Kundu K (2017) Densification of biomass by briquetting: a review. 8:20561–20568. https://doi.org/10.24327/IJRSR

  26. Muazu RI, Stegemann JA (2015) Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process Technol 133:137–145. https://doi.org/10.1016/j.fuproc.2015.01.022

    Article  CAS  Google Scholar 

  27. Rahaman SA, Salam PA (2017) Characterization of cold densified rice straw briquettes and the potential use of sawdust as binder. Fuel Process Technol 158:9–19. https://doi.org/10.1016/j.fuproc.2016.12.008

    Article  CAS  Google Scholar 

  28. Jackson J, Turner A, Mark T, Montross M (2016) Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Process Technol 148:43–49. https://doi.org/10.1016/j.fuproc.2016.02.024

    Article  CAS  Google Scholar 

  29. Mikulandrić R, Vermeulen B, Nicolai B, Saeys W (2016) Modelling of thermal processes during extrusion based densification of agricultural biomass residues. Appl Energy 184:1316–1331. https://doi.org/10.1016/j.apenergy.2016.03.067

    Article  Google Scholar 

  30. Okot DK, Bilsborrow PE, Phan AN (2018) Effects of operating parameters on maize COB briquette quality. Biomass Bioenergy 112:61–72. https://doi.org/10.1016/j.biombioe.2018.02.015

    Article  CAS  Google Scholar 

  31. Zabava B, Voicu G, Dinca M, et al (2018) Durability of pellets obtained from energy plants: review. 1838–1843. https://doi.org/10.22616/ERDev2018.17.N419

  32. Limousy L, Jeguirim M, Labbe S et al (2015) Performance and emissions characteristics of compressed spent coffee ground/wood chip logs in a residential stove. Energy Sustain Dev 28:52–59. https://doi.org/10.1016/j.esd.2015.07.002

    Article  CAS  Google Scholar 

  33. Thabuot M, Pagketanang T, Panyacharoen K, et al (2015) Effect of applied pressure and binder proportion on the fuel properties of holey bio-briquettes. Elsevier B.V

  34. Yank A, Ngadi M, Kok R (2016) Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy 84:22–30. https://doi.org/10.1016/j.biombioe.2015.09.015

    Article  CAS  Google Scholar 

  35. Soleimani M, Tabil XL, Grewal R, Tabil LG (2017) Carbohydrates as binders in biomass densification for biochemical and thermochemical processes. Fuel 193:134–141. https://doi.org/10.1016/j.fuel.2016.12.053

    Article  CAS  Google Scholar 

  36. Chen WH, Lin BJ, Colin B et al (2018) Hygroscopic transformation of woody biomass torrefaction for carbon storage. Appl Energy 231:768–776. https://doi.org/10.1016/j.apenergy.2018.09.135

    Article  CAS  Google Scholar 

  37. Ndiema CKW, Manga PN, Ruttoh CR (2002) Influence of die pressure on relaxation characteristics of briquetted biomass. Energy Convers Manag 43:2157–2161. https://doi.org/10.1016/S0196-8904(01)00165-0

    Article  CAS  Google Scholar 

  38. Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101:1082–1090. https://doi.org/10.1016/j.biortech.2009.08.064

    Article  CAS  PubMed  Google Scholar 

  39. Lubwama M, Yiga VA (2018) Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renew Energy 118:43–55. https://doi.org/10.1016/j.renene.2017.11.003

    Article  CAS  Google Scholar 

  40. Ndindeng SA, Mbassi JEG, Mbacham WF et al (2015) Quality optimization in briquettes made from rice milling by-products. Energy Sustain Dev 29:24–31. https://doi.org/10.1016/j.esd.2015.09.003

    Article  Google Scholar 

  41. Jenkins BM, Baxter LL, Miles TR, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  CAS  Google Scholar 

  42. Brand MA, Jacinto RC, Antunes R, da Cunha AB (2017) Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing. Renew Energy 111:116–123. https://doi.org/10.1016/j.renene.2017.03.084

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Gobierno de Navarra and Fondo Europeo de Desarrollo Regional (FEDER) by the biomasa de marro de café para calderas ecológicas (Reference: 0011-1365-2016-000070), research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seco.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seco, A., Espuelas, S., Marcelino, S. et al. Characterization of Biomass Briquettes from Spent Coffee Grounds and Xanthan Gum Using Low Pressure and Temperature. Bioenerg. Res. 13, 369–377 (2020). https://doi.org/10.1007/s12155-019-10069-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10069-8

Keywords

Navigation