Skip to main content
Log in

Degradation of Fibre and Non-fibre Fractions During Anaerobic Digestion in Silages of Maize, Sunflower and Sorghum-Sudangrass of Different Maturities

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study investigated the temporal dynamics of the degradation of organic matter (OM), fibre, protein and remaining organic constituents during anaerobic digestion of silages from maize, sunflower and sorghum-sudangrass that were harvested at different maturity stages. The tests were conducted using an in sacco method in 20 l digesters. The degradation kinetics of fibres showed some similarity for maize and sorghum-sudangrass with a continuous progress, whereas in sunflower it developed with a strong degradation right after incubation to reach a quasi-constant level for the rest of the 35 days lasting fermentation time. The degradation process for crude protein was usually intense from the very beginning and levelled off after only 5 days. Methane yield after 35 days amounted to 358, 278, and 320 lN CH4/kg OM for maize, sunflower and sorghum-sudangrass respectively but could not be predicted with high accuracy by regression models based on organic constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADF:

Acid detergent fibre

ADL:

Acid detergent lignin

CS:

Crop species

N:

Total nitrogen

NDF:

Neutral detergent fibre

NDO:

Non-determined organics

OM:

Organic matter

SD:

Sampling date

References

  1. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agr Ecosyst Environ 118(1–4):173–182

    Article  CAS  Google Scholar 

  2. Amon T, Amon B, Kryvorucko V, Zollitsch W, Mayer K, Gruber L (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98(17):3204–3212, 12

    Article  CAS  PubMed  Google Scholar 

  3. Angelidaki I, Boe K, Ellegaard L (2005) Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci Technol 52(1–2):189–194

    CAS  PubMed  Google Scholar 

  4. Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15(9):4295–4301

    Article  CAS  Google Scholar 

  5. Bayané A, Guiot S (2011) Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev Environ Sci Biotechnol 10(1):43–62

    Article  Google Scholar 

  6. Boyle WC (1976) Energy recovery from sanitary landfills–a review. Microbial Energy Conversion, 119–138. Oxford, Pergamon Press

  7. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552

    Article  CAS  Google Scholar 

  8. Buxton DR (1996) Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim Feed Sci Technol 59(1–3):37–49

    Article  Google Scholar 

  9. Chandler JA, Jewell WJ, Gossett JM, Van Soest PJ, Robertson JB (1980). Predicting methane fermentation biodegradability. In Biotechnol Bioeng Symp (United States), vol. 10, United States

  10. Cherney JH, Cherney DJR, Mertens DR (1988) Fiber composition and digestion kinetics in grass stem internodes as influenced by particle size 1. J Dairy Sci 71(8):2112–2122

    Article  Google Scholar 

  11. Chesson A (1988) Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Anim Feed Sci Technol 21(2–4):219–228

    Article  CAS  Google Scholar 

  12. Cone JW, van Gelder AH, Bachmann H, Hindle VA (2002) Comparison of organic matter degradation in several feedstuffs in the rumen as determined with the nylon bag and gas production techniques. Anim Feed Sci Technol 96(1–2):55–67

    Article  CAS  Google Scholar 

  13. DePeters EJ, Fadel JG, Arosemena A (1997) Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Anim Feed Sci Technol 67(2–3):127–140

    Article  CAS  Google Scholar 

  14. Devendra C (1995) Nutritional ecology of the ruminant. Second edition, 1994: Peter J. van Soest, Cornstock Publishing Associates, Cornell University Press, Eage House, 512 East State Street, Ithaca, NY 14850, USA. HB US$71.50. ISBN 0-8014-2772-X. 476 pp. Livest Prod Sci 43(2): 179–180

  15. Dewhurst RJ, Hepper D, Webster AJF (1995) Comparison of in sacco and in vitro techniques for estimating the rate and extent of rumen fermentation of a range of dietary ingredients. Anim Feed Sci Technol 51(3–4):211–229

    Article  Google Scholar 

  16. Emanuele SM, Staples CR (1988) Effect of forage particle size on in situ digestion kinetics. J Dairy Sci 71(7):1947–1954

    Article  Google Scholar 

  17. Federal Biological Research Centre for Agriculture and Forestry (2001) http://www.Jki.bund.de/fileadmin/dam.uploads/.veroeff/bbch/BBCH-Skala.englisch.pdf (last access: 30.11.2015)

  18. Ferreira G, Mertens DR (2007) Measuring detergent fibre and insoluble protein in corn silage using crucibles or filter bags. Anim Feed Sci Technol 133(3–4):335–340

    Article  CAS  Google Scholar 

  19. Field AP, Miles J, Field Z (2012) Discovering statistics using R. Sage, London

  20. FNR (2014) https://mediathek.fnr.de/grafiken/daten-und-fakten/bioenergie/biogas.html

  21. Getachew G, Robinson PH, DePeters EJ, Taylor SJ (2004) Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim Feed Sci Technol 111(1–4):57–71

    Article  CAS  Google Scholar 

  22. Graß R, Heuser F, Stülpnagel R, Piepho H-P, Wachendorf M (2013) Energy crop production in double-cropping systems: results from an experiment at seven sites. Eur J Agron 51:120–129

    Article  Google Scholar 

  23. Graß R, Thies B, Kersebaum K-C, Wachendorf M (2015) Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change. Eur J Agron 70:1–10

    Article  Google Scholar 

  24. Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98(6):1270–1277

    Article  CAS  PubMed  Google Scholar 

  25. Hall MB (2003) Challenges with nonfiber carbohydrate methods. J Anim Sci 81(12):3226–3232

    CAS  PubMed  Google Scholar 

  26. Hall MB, Mertens DR (2012) A ring test of in vitro neutral detergent fiber digestibility: analytical variability and sample ranking. J Dairy Sci 95(4):1992–2003

    Article  CAS  PubMed  Google Scholar 

  27. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  PubMed  Google Scholar 

  28. Herrmann A, Rath J (2012) Biogas production from maize: current state, challenges, and prospects. 1. Methane yield potential. BioEnergy Res 5(4):1027–1042

    Article  CAS  Google Scholar 

  29. Hristov AN, Mertens D, Zaman S, Vander Pol M, Price WJ (2010) Variability in feed and total mixed ration neutral detergent fiber and crude protein analyses among commercial laboratories. J Dairy Sci 93(11):5348–5362

    Article  CAS  PubMed  Google Scholar 

  30. Jacobi HF, Moschner CR, Hartung E (2011) Use of near infrared spectroscopy in online-monitoring of feeding substrate quality in anaerobic digestion. Bioresour Technol 102(7):4688–4696

    Article  CAS  PubMed  Google Scholar 

  31. Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102(3):2255–2264

    Article  CAS  PubMed  Google Scholar 

  32. Mauseth JD (1988) Plant anatomy. The Benjamin/Cummings Publishing Company, CA

  33. Moore KJ, Jung H-JG (2001) Lignin and fiber digestion. J Range Manage 54(4):420–430

    Article  Google Scholar 

  34. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43(2):124–129

    Article  CAS  Google Scholar 

  35. Ørskov ER, Hovell FDDB, Mould F (1980) The use of the nylon bag technique for the evaluation of feedstuffs. Trop Anim Prod 5(3):195–212

    Google Scholar 

  36. Prochnow A, Heiermann M, Plöchl M, Linke B, Idler C, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland – a review: 1. biogas. Bioresour Technol 100(21):4931–4944

    Article  CAS  PubMed  Google Scholar 

  37. Richter F, Graß R, Fricke T, Zerr W, Wachendorf M (2009) Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. II. Effects of hydrothermal conditioning and mechanical dehydration on anaerobic digestion of press fluids. Grass Forage Sci 64(4):354–363

    Article  Google Scholar 

  38. Rodrigues MAM, Cone JW, Ferreira LMM, Blok MC, Guedes CVM (2009) Relationship between in situ degradation kinetics and in vitro gas production fermentation using different mathematical models. Anim Feed Sci Technol 151(1–2):86–96

    Article  CAS  Google Scholar 

  39. Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2012) Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chem Eng J 211–212:488–492

    Article  Google Scholar 

  40. Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russell JB (1992) A net carbohydrate and protein system for evaluating cattle diets: II. carbohydrate and protein availability. J Anim Sci 70(11):3562–3577

    CAS  PubMed  Google Scholar 

  41. Stefanon B, Pell AN, Schofield P (1996) Effect of maturity on digestion kinetics of water-soluble and water-insoluble fractions of alfalfa and brome hay. J Anim Sci 74:1104–1115

    CAS  PubMed  Google Scholar 

  42. Surendra KC, Khanal SK (2015) Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop. Bioresour Technol 178:187–193

    Article  CAS  PubMed  Google Scholar 

  43. Triolo JM, Pedersen L, Qu H, Sommer SG (2012) Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour Technol 125:226–232

    Article  CAS  PubMed  Google Scholar 

  44. Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102(20):9395–9402

    Article  CAS  PubMed  Google Scholar 

  45. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of Fibrous Feeds. IV. Determination of plant cell-wall constituents. J AOAC 50(1):50–55

    Google Scholar 

  46. VDI 4630 (2004) Vergärung organischer Stoffe (Fermentation of organic materials). Verein Deutscher Ingenieure, Düsseldorf

    Google Scholar 

  47. Zerr W (2006) Versuchsanlage zur energetischen Beurteilung von Substraten und Kofermentaten für Biogasanlagen. Umweltwiss Schadst Forsch 18(4):219–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liina Nurk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurk, L., Bühle, L. & Wachendorf, M. Degradation of Fibre and Non-fibre Fractions During Anaerobic Digestion in Silages of Maize, Sunflower and Sorghum-Sudangrass of Different Maturities. Bioenerg. Res. 9, 720–730 (2016). https://doi.org/10.1007/s12155-016-9717-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9717-3

Keywords

Navigation