Skip to main content
Log in

Evaluation of Microalgae Biofuel Production Potential and Cultivation Sites Using Geographic Information Systems: A Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Geographic Information System (GIS) tools have been used to strategically locate bioenergy facilities and optimize the relationship between biomass supply and demand, aiming to minimize overall fuel production costs. Microalgae, also termed third generation bioenergy feedstocks, are discussed for their potential to meet future energy demands. This study reviews literature on GIS applications to locate algae cultivation sites and estimate algae biofuel potential. To highlight the diversity of results, a quantitative comparison for the US studies is presented. We found two major assumptions that primarily limited the algae biofuel production potential estimates: (1) the production technology (open pond or photobioreactor), and (2) the number and type of resources considered, such as land type, CO2, water source, water quality, etc. All studies used binary (a location is either unsuitable or suitable) suitability models to determine areas for algae production. Most studies considered water, land, and CO2 resources, while some also accounted for infrastructure, soil properties, and work force requirements. We found that potential cultivation area in the USA is most sensitive to the constraints of CO2 availability and land cost. This review explains the wide range of algal biofuel potential estimates (from 0.09 to over 600 billion L yr−1) by identifying underlying assumptions, methodologies, and data. The highly variable outputs indicate the need for a comprehensive analysis of different criteria individually and in combination to estimate realistic biofuel potential. The results suggest that with models becoming increasingly detailed in considering resources and conversion/production technologies, further decrease in estimated theoretical production potential is expected under available technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tilman T, Socolow R, Foley J, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels—the food, energy, and environment. Science 325(5938):270–271. doi:10.1126/science.1177970

    Article  CAS  PubMed  Google Scholar 

  2. Elliott J, Sharma B, Best N, Glotter M, Dunn JB, Foster I et al (2014) A spatial modeling framework to evaluate domestic biofuel-induced potential land use changes and emissions. Environ Sci Technol 48(4):2488–2496. doi:10.1021/es404546r

    CAS  PubMed  Google Scholar 

  3. Calvert K (2011) Geomatics and bioenergy feasibility assessments: taking stock and looking forward. Renew Sust Energ Rev 15(2):1117–1124. doi:10.1016/j.rser.2010.11.014

    Article  Google Scholar 

  4. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16. doi:10.1016/j.biortech.2010.06.032

    Article  CAS  PubMed  Google Scholar 

  5. Roesijadi G, Coleman AM, Judd C, Van Cleve B, Thom RM, Buenau KE et al (2011) Macroalgae analysis. US Department for energy, Richland

    Google Scholar 

  6. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  7. Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci 6(12):3765–3779. doi:10.1039/c3ee24241b

    Article  CAS  Google Scholar 

  8. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193. doi:10.1016/j.biortech.2010.06.139

    Article  CAS  PubMed  Google Scholar 

  9. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  10. Algae Biomass Organization (2014) Commercial Production. Available: http://allaboutalgae.com/commercial-production/. Accessed 14 April 2014

  11. Sarkar A (2007) GIS applications in logistics: a literature review. U.S. SBA Grant No. SBAHQ-06-1-0046:1-11

  12. Gürder F, Yılmaz Y (2012) Geographic information systems in strategic decision making in logistics companies. Int J Bus Soc Res 2(4):76–86

    Google Scholar 

  13. Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170. doi:10.1016/j.enconman.2010.06.055

    Article  Google Scholar 

  14. Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749. doi:10.1016/j.enconman.2010.06.010

    Article  CAS  Google Scholar 

  15. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  CAS  PubMed  Google Scholar 

  16. Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sust Energ Rev 30:1035–1046. doi:10.1016/j.rser.2013.11.003

    Article  CAS  Google Scholar 

  17. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232. doi:10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  18. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322

    Article  PubMed Central  PubMed  Google Scholar 

  19. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50(7):1834–1840. doi:10.1016/j.enconman.2009.03.001

    Article  CAS  Google Scholar 

  20. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555. doi:10.1016/j.apenergy.2010.12.012

    Article  CAS  Google Scholar 

  21. Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34. doi:10.1016/j.biortech.2010.06.057

    Article  CAS  PubMed  Google Scholar 

  22. Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410. doi:10.1016/j.apenergy.2010.12.014

    Article  CAS  Google Scholar 

  23. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42. doi:10.1016/j.biortech.2010.06.158

    Article  CAS  PubMed  Google Scholar 

  24. Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):346–351. doi:10.1016/j.copbio.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  25. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593. doi:10.1016/j.rser.2010.09.018

    Article  CAS  Google Scholar 

  26. Ribeiro LA, Silva PP (2013) Surveying techno-economic indicators of microalgae biofuel technologies. Renew Sust Energ Rev 25:89–96. doi:10.1016/j.rser.2013.03.032

    Article  CAS  Google Scholar 

  27. Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energy 36(1):158–162. doi:10.1016/j.renene.2010.06.016

    Article  CAS  Google Scholar 

  28. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ et al (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286. doi:10.1016/j.copbio.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  30. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610. doi:10.1016/j.rser.2010.06.014

    Article  CAS  Google Scholar 

  31. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17. doi:10.1016/j.biortech.2010.06.035

    Article  CAS  PubMed  Google Scholar 

  32. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4). doi: 10.1371/journal.pmed.1000097

  33. EPA (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis

  34. Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47. doi: 10.1029/2010wr009966

  35. Quinn JC, Catton K, Wagner N, Bradley TH (2011) Current large-scale us biofuel potential from microalgae cultivated in photobioreactors. Bioenergy Res 5(1):49–60. doi:10.1007/s12155-011-9165-z

    Article  Google Scholar 

  36. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2012) An assessment of land availability and price in the coterminous United States for conversion to algal biofuel production. Biomass Bioenergy 47:483–497. doi:10.1016/j.biombioe.2012.09.060

    Article  Google Scholar 

  37. Quinn JC, Catton KB, Johnson S, Bradley TH (2013) Geographical assessment of microalgae biofuels potential incorporating resource availability. Bioenergy Res 6(2):591–600. doi:10.1007/s12155-012-9277-0

    Article  CAS  Google Scholar 

  38. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS (2013) A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States. Environ Sci Technol 47(9):4840–4849. doi:10.1021/Es304135b

    Article  CAS  PubMed  Google Scholar 

  39. Venteris ER, McBride RC, Coleman AM, Skaggs RL, Wigmosta MS (2014) Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure. Environ Sci Technol 48(6):3559–3566. doi:10.1021/es4045488

    Article  CAS  PubMed  Google Scholar 

  40. Orfield ND, Keoleian GA, Love NG (2014) A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization. Biomass Bioenergy 63:76–85. doi:10.1016/j.biombioe.2014.01.047

    Article  CAS  Google Scholar 

  41. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass Bioenergy. doi:10.1016/j.biombioe.2014.02.001

    Google Scholar 

  42. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) Regional algal biofuel production potential in the coterminous United States as affected by resource availability trade-offs. Algal Res 5:215–225. doi:10.1016/j.algal.2014.02.002

    Article  Google Scholar 

  43. Chiu YW, Wu M (2013) Considering water availability and wastewater resources in the development of algal bio-oil. Biofuels Bioprod Bioref 7(4):406–415. doi:10.1002/bbb.1397

    Article  CAS  Google Scholar 

  44. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, Berkeley

    Google Scholar 

  45. Fortier M-OP, Sturm BSM (2012) Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants. Environ Sci Technol 46(20):11426–11434. doi:10.1021/es302127f

    Article  CAS  PubMed  Google Scholar 

  46. Bennett MC, Turn SQ, Chan WY (2014) A methodology to assess open pond, phototrophic, algae production potential: a Hawaii case study. Biomass Bioenergy. doi:10.1016/j.biombioe.2014.03.016

    Google Scholar 

  47. Klise GT, Roach JD, Passell HD (2011) A study of algal biomass potential in selected Canadian regions. Sandia National Laboratories, Albuquerque

    Google Scholar 

  48. Borowitzka MA, Boruff BJ, Moheimani NR, Pauli N, Cao Y, Smith H (2012) Identification of the optimum sites for industrial-scale microalgae biofuel production in WA using a GIS model. The Centre for Research into Energy for Sustainable Transport, Murdoch University & University of Western Australia

  49. Prasad P, Pullar D, Pratt S (2014) Facilitating access to the algal economy: mapping waste resources to identify suitable locations for algal farms in Queensland. Resour Conserv Recycl 86:47–52. doi:10.1016/j.resconrec.2014.01.008

    Article  Google Scholar 

  50. Geertman S, Stillwell J (2002) Planning support systems in practice. Springer, Germany

    Google Scholar 

  51. Olofsson M, Lamela T, Nilsson E, Bergé JP, Pino VD, Uronen P et al (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592. doi:10.3390/en5051577

    Article  CAS  Google Scholar 

  52. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  53. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531. doi:10.1016/j.apenergy.2011.04.018

    Article  Google Scholar 

  54. RFS (2014) Renewable Fuel Standard. Available: http://www.ethanolrfa.org/pages/renewable-fuel-standard. Accessed 14 April 2014

  55. ESRI, ArcGIS Desktop, ed. Redlands, CA: Environmental Systems Research Institute

  56. Murphy CF (2010) Analysis of innovative feedstock sources and production technologies for renewable fuels: algal oil biodiesel. University of Texas, Austin

    Google Scholar 

  57. Sudhakar K, Premalatha M (2012) Theoretical assessment of algal biomass potential for carbon mitigation and biofuel production. Iran J Energy Environ 3(3):232–240

    Google Scholar 

  58. Nicks AD, Gander GA (1994) Cligen -A weather generator for climate inputs to water-resource and other models. Computers in Agriculture 1994- Proceedings of the 5th International Conference:903-909

  59. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820. doi:10.1021/bp070371k

    CAS  PubMed  Google Scholar 

  60. Richardson JW, Outlaw JL, Allison M (2010) The economics of microalgae oil. AgBioforum 13(2):119–130

    Google Scholar 

  61. Oilgae (2014) Capture of CO2 emissions using algae. Available: http://www.oilgae.com/ref/downloads/Analysis_of_CO2_Capture_Using_Algae.pdf. Accessed 10 June 2014

  62. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165. doi:10.1016/j.biortech.2010.07.017

    Article  CAS  PubMed  Google Scholar 

  63. National Research Council (2012) Sustainable development of algal biofuels in the United States. Washington, DC, US

  64. Beal CM, Stillwell AS, King CW, Cohen SM, Berberoglu H, Bhattarai RP et al (2012) Energy return on investment for algal biofuel production coupled with wastewater treatment. Water Environ Res 84(9):19pp

    Article  Google Scholar 

  65. Clean Air Task Force (2013) The status of algal biofuel development. Available: http://www.catf.us/resources/whitepapers/files/201307-CATF%20Status%20of%20Algal%20Biofuels.pdf. Accessed

  66. Mu D, Mi M, Krohn B, Mullins KA, Ruan R, Hill J (2014) Life cycle environmental impacts of wastewater-based algal biofuels. Environ Sci Technol 48(19):11696–11704. doi:10.1021/es5027689

    Article  CAS  PubMed  Google Scholar 

  67. Ahmad T. Spatial data quality. Available: http://www.iasri.res.in/ebook/GIS_TA/M3_5_SDQ.pdf. Accessed 11 June 2014

  68. Data quality and uncertainty in GIS. Available: http://www.nuim.ie/staff/dpringle/courses/hdip/gis11.pdf. Accessed 2 June 2014

  69. Gurney KR, Mendoza D, Zhou Y, Fischer M, Miller C, Geethakumar S, et al (2009) The Vulcan Project: high resolution fossil fuel combustion CO2 emissions fluxes for the United States. Environ Sci Technol 43. doi: 10.1021/es900806c

  70. Environmental Protection Agency (2010) eGRID: The Emissions & Generation Resource Integrated Database. Available: http://www.epa.gov/cleanenergy/energy-resources/egrid/. Accessed 25 August 2014

  71. The National Carbon Sequestration Database and Geographic Information System (2012) CO2 stationary source. Available: http://www.netl.doe.gov/research/coal/carbon-storage/natcarb-atlas/data-download. Accessed 24 August 2014

  72. Store R, Jokimäki J (2003) A GIS-based multi-scale approach to habitat suitability modeling. Ecol Model 169(1):1–15. doi:10.1016/S0304-3800(03)00203-5

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the CenUSA Bioenergy project funded by the Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30411 from the USDA National Institute of Food and Agriculture. We also would like to acknowledge Iowa State University Department of Agronomy for their support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sharma.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Brandes, E., Khanchi, A. et al. Evaluation of Microalgae Biofuel Production Potential and Cultivation Sites Using Geographic Information Systems: A Review. Bioenerg. Res. 8, 1714–1734 (2015). https://doi.org/10.1007/s12155-015-9623-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9623-0

Keywords

Navigation