Skip to main content

Advertisement

Log in

Reversible Flocculation of Microalgae using Magnesium Hydroxide

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Flocculation of microalgae is a promising low-cost strategy to harvest microalgae for bulk biomass production. However, residual flocculants can interfere in further downstream processes or influence biomass quality. In this study, a new concept is demonstrated based on reversible magnesium hydroxide flocculation, using Chlorella vulgaris and Phaeodactylum tricornutum as, respectively, a freshwater and a marine model species. We show that flocculation was induced by precipitation of magnesium hydroxide at high pH (10 to 10.5). This resulted in a magnesium content of the microalgal biomass of 5 % for Chlorella and 18 % for Phaeodactylum. After pre-concentration of the microalgal biomass by gravity sedimentation, 95 % of the precipitated magnesium hydroxide could be removed from the biomass by mild acidification (pH 7 to 8). The pH fluctuations experienced by the microalgae during flocculation/de-flocculation had no influence on biomass composition (FAME, total N and P, carbohydrates, proteins, mineral content) and on the viability of microalgal cells. Magnesium can thus be used as pH-dependent reversible flocculant for harvesting microalgae in both marine and freshwater medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science (New York, NY) 329:796–799. doi: 10.1126/science.1189003

  2. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biogeosciences 1:143–162. doi:10.4155/bfs.09.10

    CAS  Google Scholar 

  3. Schlesinger A, Eisenstadt D, Bar-Gil A et al (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv 30:1023–1030. doi:10.1016/j.biotechadv.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  4. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239. doi:10.1016/j.tibtech.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  5. Beal CM, Smith CH, Webber ME et al (2010) A framework to report the production of renewable diesel from algae. BioEnergy Research 4:36–60. doi:10.1007/s12155-010-9099-x

    Article  Google Scholar 

  6. Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research 1:20–43. doi:10.1007/s12155-008-9008-8

    Article  Google Scholar 

  7. Milledge JJ, Heaven S (2012) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio/Technol 12:165–178. doi:10.1007/s11157-012-9301-z

    Article  Google Scholar 

  8. Molina Grima E, Belarbi EH, Acién Fernández FG et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  9. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702. doi:10.1016/j.biotechadv.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  10. Borges L, J a. M-V, D’Oca MGM, Abreu PC (2011) Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenergy 35:4449–4454. doi:10.1016/j.biombioe.2011.09.003

    Article  CAS  Google Scholar 

  11. Lee K, Lee SY, Praveenkumar R et al (2014) Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella sp. Bioresour Technol 167:284–290. doi:10.1016/j.biortech.2014.06.055

    Article  CAS  PubMed  Google Scholar 

  12. Lim J, Chieh DCJ, Jalak SA et al (2012) Rapid magnetophoretic separation of microalgae. Small 8:1683–1692. doi:10.1002/smll.201102400

    Article  CAS  PubMed  Google Scholar 

  13. Wang S, Wang F, Hu Y (2014) Magnetic flocculant for high efficiency harvesting of microalgal cells. ACS Appl Mater Interfaces 6:109–115

    Article  CAS  PubMed  Google Scholar 

  14. Beuckels A, Depraetere O, Vandamme D et al (2013) Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass Bioenergy 54:107–114. doi:10.1016/j.biombioe.2013.03.027

    Article  CAS  Google Scholar 

  15. Vandamme D, Foubert I, Fraeye I et al (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119. doi:10.1016/j.biortech.2011.11.105

    Article  CAS  PubMed  Google Scholar 

  16. Smith BT, Davis RH (2012) Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Research 1:32–39. doi:10.1016/j.algal.2011.12.002

    Article  CAS  Google Scholar 

  17. Besson A, Guiraud P (2013) High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina. Bioresour Technol 147C:464–470. doi:10.1016/j.biortech.2013.08.053

    Article  Google Scholar 

  18. Brady PV, Pohl PI, Hewson JC (2014) A coordination chemistry model of algal autoflocculation. Algal Research. doi:10.1016/j.algal.2014.02.004

    Google Scholar 

  19. Şirin S, Trobajo R, Ibanez C, Salvadó J (2011) Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 24:1067–1080. doi:10.1007/s10811-011-9736-6

    Google Scholar 

  20. Guillard RRL, Lorenzen CL (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:1–14

    Google Scholar 

  21. Moheimani NR, Borowitzka MA (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, p 288

    Google Scholar 

  22. Dubois M, Gilles KA, Hamilton JK, Rebers PA (1956) Colorimetric method for determination of sugars and related substances. Anal Chem Soc 25:350–356

    Article  Google Scholar 

  23. Moheimani NR, Borowitzka M a., Isdepsky A, Fon Sing S (2013) Standard methods for measuring growth of algae and their composition. Algae for biofuels and Energy. pp 265–284

  24. Cho S, Lee N, Park S et al (2013) Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour Technol 131:515–520. doi:10.1016/j.biortech.2012.12.176

    Article  CAS  PubMed  Google Scholar 

  25. Koroleff F (1983) Simultaneous oxidation of nitrogen and phosphorus compounds by persulfate. Methods of Seawater Analysis

  26. Safi C, Charton M, Pignolet O et al (2012) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J Appl Phycol. doi:10.1007/s10811-012-9886-1

    Google Scholar 

  27. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  28. García-Pérez JS, Beuckels A, Vandamme D et al (2014) Influence of magnesium concentration, biomass concentration and pH on flocculation of Chlorella vulgaris. Algal Research 3:24–29. doi:10.1016/j.algal.2013.11.016

    Article  Google Scholar 

  29. Duan J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interf Sci 100–102:475–502. doi:10.1016/S0001-8686(02)00067-2

    Article  Google Scholar 

  30. Becker W, Richmond A (2004) Handbook of microalgal culture. Blackwell, Hoboken

    Google Scholar 

  31. Tokuşoglu O, Uunal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68:1144–1148. doi:10.1111/j.1365-2621.2003.tb09615.x

    Article  Google Scholar 

  32. Rebolloso-Fuentes MM, Navarro-Pérez A, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Phaeodactylum tricornutum. J Food Biochem 25:57–76

    Article  CAS  Google Scholar 

  33. Pokrovsky OS, Schott J, Castillo A (2005) Kinetics of brucite dissolution at 25 °C in the presence of organic and inorganic ligands and divalent metals. Geochim Cosmochim Acta 69:905–918. doi:10.1016/j.gca.2004.08.011

    Article  CAS  Google Scholar 

  34. Lardon L, Hélias A, Sialve B et al (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481. doi:10.1021/es900705j

    Article  CAS  PubMed  Google Scholar 

  35. Spilling K, Seppälä J, Tamminen T (2011) Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J Appl Phycol 23:959–966. doi:10.1007/s10811-010-9616-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research Foundation—Flanders (FWO PhD fellowship A. Beuckels, FWO Postdoctoral fellowship D. Vandamme). We thank Kristin Coorevits and Prof. Erik Smolders, Division of Soil and Water Management, KU Leuven for the ICP-MS analysis. We thank Kevin Vanneste and Manel Azzabi for their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dries Vandamme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandamme, D., Beuckels, A., Markou, G. et al. Reversible Flocculation of Microalgae using Magnesium Hydroxide. Bioenerg. Res. 8, 716–725 (2015). https://doi.org/10.1007/s12155-014-9554-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9554-1

Keywords

Navigation