Skip to main content
Log in

Isolation of High-Lipid Tetraselmis suecica Strains Following Repeated UV-C Mutagenesis, FACS, and High-Throughput Growth Selection

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Mutagenesis and selection of microalgae can be used for accelerated breeding of elite strains, providing a significant advantage over genetic engineering as prior biochemical and genetic information is not required. Ultraviolet (UV)-C-induced mutagenesis combined with fluorescence-activated cell sorting (FACS) and microtiter plate reader cell density screening was used to produce Tetraselmis suecica strains with increased lipid contents without compromising on cell growth. After five rounds of mutation-selection, two dosages of UV-C (50 and >98 % lethality) yielded two improved strains (M5 and M24) that produced significantly more neutral lipids (increases of 114 and 123 %, respectively). This study highlights that repeated UV-C mutagenesis and high-throughput selection for cell growth can be a viable combined approach to improve lipid productivity in microalgae. These maybe used as elite strains for future breeding programs and as potential feedstock for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Doan YTT, Obbard JP (2011) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Glob Chang Biol Bioenergy 3:264–270

    Article  CAS  Google Scholar 

  2. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  3. Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29:542–549

    Article  CAS  PubMed  Google Scholar 

  4. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  5. Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593

    Article  CAS  Google Scholar 

  6. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  7. Gouveia L, Oliveria A (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  PubMed  Google Scholar 

  8. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  9. Zeiler KG, Heacox DA, Toon ST, Kadam AL, Brown LM (1995) The use of microalgae for assimilation and utlization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 36:702–712

    Article  Google Scholar 

  10. Van Thang D, Li Y, Nowak E, Schenk PM (2012) Microalgae isolation and selection for prospective biodiesel production. Energies 5:1835–1849

    Article  Google Scholar 

  11. Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energy 36:158–162

    Article  CAS  Google Scholar 

  12. Queener SW, Lively DH (1986) Screening and selection for strain improvement. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington DC, pp 155–169

    Google Scholar 

  13. Rowlands RT (1984) Industrial strain improvement: mutagenesis and random screening procedures. Enzym Microb Technol 6:3–10

    Article  CAS  Google Scholar 

  14. Alonso DL, Castillo CIS, Grima EM, Cohen Z (1996) First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. J Phycol 32:553–558

    Article  Google Scholar 

  15. Chaturvedi R, Fujita Y (2006) Isolation of enhanced eicosapentanoic acid producing mutant of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol Res 54:208–219

    Article  CAS  Google Scholar 

  16. Chaturvedi R, Uppalapati SR, Alamsjah MA, Fujita Y (2004) Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentanoic acid following N-methyl-N-nitrosourea-induced mutagenesis. J Appl Phycol 16:135–144

    Article  CAS  Google Scholar 

  17. Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q (2012) Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Appl Energy 96:371–377

    Article  CAS  Google Scholar 

  18. Lian M, Huang H, Ren L, Ji X, Zhu J, Jin L (2010) Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Appl Microbiol Biotechnol 162:935–941

    CAS  Google Scholar 

  19. Meireles LA, Catarina Guesdes A, Xavier Malcata F (2003) Increase of the yields of eicosapentanoic and docosahexanoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81:50–55

    Article  CAS  PubMed  Google Scholar 

  20. Kamath BE, Vidhyavathi R, Sarada R, Ravishakar GA (2008) Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresour Technol 99:8867–8673

    Google Scholar 

  21. Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C (2012) Isolation and partial characterization of mutants with elecated lipid content in Chlorella sorokiana and Scenedesmus obliquus. J Biotechnol 162:3–12

    Article  CAS  PubMed  Google Scholar 

  22. Mendoza H, de la Jara A, Presmanes KF, Duarte LC, Ramos AA, Duarte VS, Varela JCS (2008) Characterization of Dunaliella salina strains by flow cytometry: a new approach to select carotenoid hyperproducing strains. Electron J Biotechnol 11:5–6

    Article  Google Scholar 

  23. Bougaran G, Rouxel C, Dubois N, Kaas R, Grouas S, Lukomska E, Le Coz J, Cadoret J (2012) Enhancement of neutral lipid productivity in the microalga Isochrysis affinis galbana (T-Iso) by a mutation-selection procedure. Biotechnol Bioeng 11:2737–2745

    Article  Google Scholar 

  24. Montero MF, Aristizabal M, Reina GG (2011) Isolation of high-lipid content strains of the marine microala Tetraselmis suecica for biodiesel prodction by flow cytometry and single-cell sorting. J Appl Phycol 23:1053–1057

    Article  CAS  Google Scholar 

  25. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  26. Chini Zitelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivitty and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular collumns. Aquaculture 261:932–943

    Article  Google Scholar 

  27. Sharma KS, Li Y, Schenk PM (2014) UV-C-mediated lipid induction and settling, a step change towards economical microalgal biodiesel production. Green Chem 16:3539–3548

    Article  CAS  Google Scholar 

  28. Lim DKY, Garg S, Timmins M, Zhang ESB, Thomas-Hall SR, Schumann H, Li Y, Schenk PM (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS One 7:e40751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  30. Carlton BC, Brown BJ (1981) Gene mutation. In: Gerhardt P (ed) Manuals of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 222–242

    Google Scholar 

  31. Droop MR (1954) A note on the isolation of small marine algae and flagellates for pure cultures. J Marine Biol Assoc 33:511–514

    Article  Google Scholar 

  32. Williams E, Lambert J, O’Brien P, Houghton JA (1979) Evidenec for dark repair of far ultraviolet light damage in the blue-green algae Gleocapsa aplicola. Photochem Photobiol 29:543–547

    Article  CAS  Google Scholar 

  33. Mendoza H, de la Jara A, Presmanes KF, Duarte LC (2012) Quick estimation of intraspeciific variation of fatty acid composition in Dunaliella salina using flow cytometry and Nile Red. J Appl Phycol 24:1237–1243

    Article  Google Scholar 

  34. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–71

    Article  CAS  PubMed  Google Scholar 

  35. Sensen CW, Heimann K, Melkonian M (1993) The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. Eur J Phycol 28:93–97

    Article  Google Scholar 

  36. Mendoza H, de la Jara A, Carmona L, Presmanes KF (2009) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to cluture conditions. Aquac Int 18:189–199

    Google Scholar 

  37. de la Jara A, Mendoza H, Martel A, Molina C, Nordstro L, de la Rosa V, Diaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate Cryptecodinium cohnii. J Appl Phycol 15:433–438

    Article  Google Scholar 

  38. Sheehan J, Dunahay T, Benemann J, Roessler PG (1998) A look back at the US department of energy’s aquatic species program—biodiesel from algae, close out report. National Renewable Energy Laboratory

  39. Post-Beittenmiller D, Roughan G, Ohlrogge J (1992) Regulation of plant fatty acid biosynthesis: analysis of acyl-CoA and acyl-ACP substrate pools in spinach and pea chloroplasts. Plant Physiol 100:923–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kocavik J, Klejdus B, Backor M (2010) Physiological responses of Scenedesmus quadricauda (Chlorophyceae) to UV-A and UV-C light. Photochem Photobiol 86:612–616

    Article  Google Scholar 

  41. Okuyama H, Orikasa Y, Nishida T (2008) Significant of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Appl Environ Microbiol 74:570–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Breuer G, de Jaeger L, Artus VP, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotech Biofuels 7:1–11

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Australian Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer M. Schenk.

Additional information

Highlights

• UV-C mutagenesis and high-throughput selection technology has been combined to improve lipid productivity in Tetraselmis suecica.

• Both 50 and >98 % lethal dosage successfully produced improved strains with approximately 100 % increase in lipid accumulation.

• Growth rates of improved strains remained unchanged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, D.K.Y., Schuhmann, H., Sharma, K. et al. Isolation of High-Lipid Tetraselmis suecica Strains Following Repeated UV-C Mutagenesis, FACS, and High-Throughput Growth Selection. Bioenerg. Res. 8, 750–759 (2015). https://doi.org/10.1007/s12155-014-9553-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9553-2

Keywords

Navigation