Skip to main content
Log in

Assessing the Soil Carbon, Biomass Production, and Nitrous Oxide Emission Impact of Corn Stover Management for Bioenergy Feedstock Production Using DAYCENT

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal. DAYCENT estimations of stover yields were correlated and reasonably accurate (adjusted r 2 = 0.53, slope = 1.18, p << 0.001, intercept = 0.36, p = 0.11). Measured and simulated average grain yields across sites did not differ as a function of residue removal, but the model tended to underestimate average measured grain yields. Modeled and measured soil organic carbon (SOC) change for all sites were correlated (adjusted r 2 = 0.54, p << 0.001), but DAYCENT overestimated SOC loss with conventional tillage. Simulated and measured SOC change did not vary by residue removal rate. DAYCENT simulated annual N2O flux more accurately at low rates (≤2-kg N2O-N ha−1 year−1) but underestimated when emission rates were >3-kg N2O-N ha−1 year−1. Overall, DAYCENT performed well at simulating stover yields and low N2O emission rates, reasonably well when simulating the effects of management practices on average grain yields and SOC change, and poorly when estimating high N2O emissions. These biases should be considered when DAYCENT is used as a decision support tool for recommending sustainable corn stover removal practices to advance bioenergy industry based on corn stover feedstock material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. US DOE (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts Industry. http://www1.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf. Accessed 29 Oct 2011

  2. Lynch JM, von Lampe M (2011) The need for bioenergy policy analysis. Biomass Bioenerg 35:2311–2314. doi:10.1016/j.biombioe.2009.10.015

    Article  Google Scholar 

  3. Halvorson AD, Jantalia CP (2011) Nitrogen fertilization effects on irrigated no-till corn production and soil carbon and nitrogen. Agron J 103:1423–1431. doi:10.2134/agronj2011.0102

    Article  CAS  Google Scholar 

  4. Karlen DL, Varvel GE, Johnson JMF et al (2011) Monitoring soil quality to assess the sustainability of harvesting corn stover. Agron J 103:288–295. doi:10.2134/agronj2010.0160s

    Article  CAS  Google Scholar 

  5. Burgess MS, Mehuys GR, Madramootoo CA (1996) Tillage and crop residue effects on corn production in Quebec. Agron J 88:792–797

    Article  Google Scholar 

  6. Linden DR, Clapp CE, Dowdy RH (2000) Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Tillage Res 56:167–174. doi:10.1016/S0167-1987(00)00139-2

    Article  Google Scholar 

  7. Power J, Wilhelm W, Doran J (1986) Crop residue effects on soil environment and dryland maize and soya bean production. Soil Tillage Res 8:101–111

    Article  Google Scholar 

  8. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:289–395

    Article  Google Scholar 

  9. Wilhelm WW, Johnson JMF, Hatfield JL et al (2004) Crop and soil productivity response to corn residue removal. Agron J 96:1–17

    Article  Google Scholar 

  10. Varvel GE, Vogel KP, Mitchell RB et al (2008) Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass Bioenergy 32:18–21. doi:10.1016/j.biombioe.2007.07.003

    Article  CAS  Google Scholar 

  11. Karlen DL, Birell SJ, Hess JR (2011) A five-year assessment of corn stover harvest in central Iowa, USA. Soil Tillage Res 115–116:47–55

    Article  Google Scholar 

  12. Maskina MS, Power JF, Doran JW, Wilhelm WW (1993) Residual effects of no-till crop residues on corn yield and nitrogen uptake. Soil Sci Soc Am J 57:1555–1560

    Article  Google Scholar 

  13. Wilhelm W, Doran J, Power J (1986) Corn and soybean yield response to crop residue management under no-tillage production systems. Agron J 78:184–189

    Article  Google Scholar 

  14. Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci Soc Am J 69:188–196

    Article  CAS  Google Scholar 

  15. Moebius-Clune BN, van Es HM, Idowu OJ et al (2008) Long-term effects of harvesting maize stover and tillage on soil quality. Soil Sci Soc Am J 72:960–969. doi:10.2136/sssaj2007.0248

    Article  CAS  Google Scholar 

  16. Wilts AR, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci Soc Am J 68:1342–1351. doi:10.2136/sssaj2004.1342

    Article  CAS  Google Scholar 

  17. Karlen DL (2010) Corn stover feedstock trials to support predictive modeling. GCB Bioenerg 2:235–247. doi:10.1111/j.1757-1707.2010.01061.x

    Article  Google Scholar 

  18. Parton WJ (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  19. Parton WJ (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131

    Article  CAS  Google Scholar 

  20. Del Grosso SJ, Halvorson AD, Parton WJ (2008) Testing DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado. J Environ Qual 37:1383–1389. doi:10.2134/jeq2007.0292

    Article  PubMed  Google Scholar 

  21. Galdos MV, Cerri CC, Cerri CEP et al (2009) Simulation of soil carbon dynamics under sugarcane with the CENTURY model. Soil Sci Soc Am J 73:802–811. doi:10.2136/sssaj2007.0285

    Article  CAS  Google Scholar 

  22. Abdalla M, Jones M, Yeluripati J et al (2010) Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmos Environ 44:2961–2970. doi:10.1016/j.atmosenv.2010.05.018

    Article  CAS  Google Scholar 

  23. Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17:675–691. doi:10.1890/05-2018

    Article  PubMed  Google Scholar 

  24. Davis S, Parton W, Dohleman F et al (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus agro-ecosystem. Ecosystems 13:144–156. doi:10.1007/s10021-009-9306-9

    Article  CAS  Google Scholar 

  25. Davis SC, Parton WJ, Grosso SJD et al (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10:69–74. doi:10.1890/110003

    Article  Google Scholar 

  26. U.S. Environmental Protection Agency (2013) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2011. 1200 Pennsylvania Ave., NW, Washington DC. http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html. Accessed 12 Sept 2013

  27. Gao J, Thelen KD, Hao X (2013) Life cycle analysis of corn harvest strategies for bioethanol production. Agron J 105:705–712. doi:10.2134/agronj2012.0420

    Article  CAS  Google Scholar 

  28. Huggins DR, Karow RS, Collins HP, Ransom JK (2011) Introduction: evaluating long-term impacts of harvesting crop residues on soil quality. Agron J 103:230–233. doi:10.2134/agronj2010.0382s

    Article  Google Scholar 

  29. Wilhelm WW, Hess JR, Karlen DL et al (2010) Review: balancing limiting factors and economic drivers for sustainable Midwestern US agricultural residue feedstock supplies. Ind Biotechnol 6:271–287. doi:10.1089/ind.2010.6.271

    Article  Google Scholar 

  30. Muth DJ, Bryden KM (2013) An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems. Environ Model Softw 39:50–69. doi:10.1016/j.envsoft.2012.04.006

    Article  Google Scholar 

  31. Fronning BE, Thelen KD, Min D-H (2008) Use of manure, compost, and cover crops to supplant crop residue carbon in corn stover removed cropping systems. Agron J 100:1703–1710. doi:10.2134/agronj2008.0052

    Article  Google Scholar 

  32. Wiggans DR, Singer JW, Moore KJ, Lamkey KR (2012) Response of continuous maize with stover removal to living mulches. Agron J 104:917–925. doi:10.2134/agronj2011.0395

    Article  Google Scholar 

  33. Sindelar AJ, Lamb JA, Sheaffer CC et al (2013) Fertilizer nitrogen rate effects on nutrient removal by corn stover and cobs. Agron J 105:437–445. doi:10.2134/agronj2012.0240

    Article  CAS  Google Scholar 

  34. Sindelar AJ, Lamb JA, Sheaffer CC et al (2012) Response of corn grain, cellulosic biomass, and ethanol yields to nitrogen fertilization. Agron J 104:363–370. doi:10.2134/agronj2011.0279

    Article  Google Scholar 

  35. Gollany HT, Novak JM, Liang Y et al (2010) Simulating soil organic carbon dynamics with residue removal using the CQESTR model. Soil Sci Soc Am J 74:372–383. doi:10.2136/sssaj2009.0086

    Article  CAS  Google Scholar 

  36. Forster P (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: the physical science basis. Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  37. Reicosky DC, Evans SD, Cambardella CA et al (2002) Continuous corn with moldboard tillage: residue and fertility effects on soil carbon. J Soil Water Conserv 57:277–284

    Google Scholar 

  38. Clapp CE, Allmaras RR, Layese MF et al (2000) Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Tillage Res 55:127–142. doi:10.1016/S0167-1987(00)00110-0

    Article  Google Scholar 

  39. Follett R, Vogel K, Varvel G et al (2012) Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. Bioenerg Res 5:866–875. doi:10.1007/s12155-012-9198-y

    Article  CAS  Google Scholar 

  40. Stetson SJ, Osborne SL, Schumacher TE et al (2012) Corn residue removal impact on topsoil organic carbon in a corn–soybean rotation. Soil Sci Soc Am J 76:1399–1406. doi:10.2136/sssaj2011.0420

    Article  CAS  Google Scholar 

  41. Hammerbeck AL, Stetson SJ, Osborne SL et al (2012) Corn residue removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Sci Soc Am J 76:1390–1398

    Article  CAS  Google Scholar 

  42. Ogle SM, Breidt FJ, Easter M et al (2010) Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob Change Biol 16:810–822. doi:10.1111/j.1365-2486.2009.01951.x

    Article  Google Scholar 

  43. Ogle SM, Breidt FJ, Easter M et al (2007) An empirically based approach for estimating uncertainty associated with modelling carbon sequestration in soils. Ecol Model 205:453–463. doi:10.1016/j.ecolmodel.2007.03.007

    Article  Google Scholar 

  44. Del Grosso SJ, Ogle SM, Parton WJ, Breidt FJ (2010) Estimating uncertainty in N2O emissions from U.S. cropland soils. Glob Biogeochem Cycles 24:GB1009. doi:10.1029/2009GB003544

    Google Scholar 

  45. Harrell Jr. FE (2012) Hmisc: Harrell Miscellaneous.

  46. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  47. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  48. Blanco-Canqui H, Lal R (2007) Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141:355–362. doi:10.1016/j.geoderma.2007.06.012

    Article  CAS  Google Scholar 

  49. Johnson JMF, Wilhelm WW, Karlen DL et al (2010) Nutrient removal as a function of corn stover cutting height and cob harvest. Bioenerg Res 3:342–352. doi:10.1007/s12155-010-9093-3

    Article  Google Scholar 

  50. Dalzell BJ, Johnson JMF, Tallaksen J et al (2013) Simulated impacts of crop residue removal and tillage on soil organic matter maintenance. Soil Sci Soc Am J 77:1349–1356. doi:10.2136/sssaj2012.0221

    Article  CAS  Google Scholar 

  51. Parkin TB (2008) Effect of sampling frequency on estimates of cumulative nitrous oxide emissions. J Environ Qual 37:1390–1395. doi:10.2134/jeq2007.0333

    Article  CAS  PubMed  Google Scholar 

  52. Fassbinder JJ, Schultz NM, Baker JM, Griffis TJ (2013) Automated, low-power chamber system for measuring nitrous oxide emissions. J Environ Qual 42:1–9. doi:10.2134/jeq2012.0283

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the US Department of Agriculture—Agricultural Research Service (USDA-ARS), as part of the USDA-ARS-Renewable Energy Assessment Project (REAP), renamed USDA-ARS-Resilient Economic Agricultural Practices (REAP). Additional funding was provided by the North Central Regional Sun Grant Center at South Dakota State University through a grant provided by the US Department of Energy—Office of Biomass Programs under award number DE-FC36-05GO85041. Many thanks is given to Dr. William Parton, Steve Williams, and Jonathan Fields for their assistance with developing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor E. Campbell.

Additional information

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the US Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

The USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, E.E., Johnson, J.M.F., Jin, V.L. et al. Assessing the Soil Carbon, Biomass Production, and Nitrous Oxide Emission Impact of Corn Stover Management for Bioenergy Feedstock Production Using DAYCENT. Bioenerg. Res. 7, 491–502 (2014). https://doi.org/10.1007/s12155-014-9414-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9414-z

Keywords

Navigation