Skip to main content

Advertisement

Log in

Effects of Initial Phosphorus Concentration and Light Intensity on Biomass Yield per Phosphorus and Lipid Accumulation of Scenedesmus sp. LX1

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Phosphorus has been considered as one of the most important limiting resources of large-scale production of microalgal biofuel. The approaches to increase biomass yield per phosphorus, along with the lipid accumulation properties of Scenedesmus sp. LX1, were investigated in this study. It was found that practical biomass yield per phosphorous was reduced with the increase of initial phosphorus (P) concentration, but increased with light intensity. The highest biomass yield per P of 4,500 kg-biomass/kg-P was achieved at initial phosphorus concentration of 0.05 mg · L−1 under the light intensity of 320 μmol photon · m−2 · s−1. Furthermore, the lipid content per biomass and triacylglycerols (TAGs) content per lipid were found to be positively correlated to biomass yield per P. With the biomass yield increased from 2,800 kg-biomass/kg-P to 4,500 kg-biomass/kg-P, the lipid content per microalgal biomass and TAG content per lipid increased from 18.7 % to 35.0 % and from 69.5 % to 83.0 %. These results suggested a possible approach to achieve high biomass production and high lipid content simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131. doi:10.1016/j.tibtech.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  2. Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):349–350. doi:10.1016/j.tibtech.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenerg Res 1(1):20–43. doi:10.1007/s12155-008-9008-8

    Article  Google Scholar 

  4. Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  5. Yang J, Xu M, Zhang X-Z, Hu Q, Sommerfeld M, Chen Y-S (2011) Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour Technol 102(11):6633–6633. doi:10.1016/j.biortech.2011.03.029

    Article  CAS  Google Scholar 

  6. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88(10):3377–3388. doi:10.1016/j.apenergy.2011.04.023

    Article  CAS  Google Scholar 

  7. Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion. Glob Environ Chang 20(3):428–439. doi:10.1016/j.gloenvcha.2010.04.004

    Article  Google Scholar 

  8. Stewart WDP (1974) Algal physiology and biochemistry. Blackwell Scientific, Oxford

    Google Scholar 

  9. Wu Y-H, Yu Y, Hu H-Y (2012) Potential biomass yield per phosphorus and lipid accumulation property of seven microalgal species. Bioresour Technol 130:599–602

    Article  PubMed  Google Scholar 

  10. Wu Y-H, Yu Y, Li X, Hu H-Y, Su Z-F (2012) Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresour Technol 112:193–198

    Article  CAS  Google Scholar 

  11. Li X, Hu H-Y, Gan K, Yang J (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp LX1 under different kinds of nitrogen sources. Ecol Eng 36(4):379–381. doi:10.1016/j.ecoleng.2009.11.003

    Article  Google Scholar 

  12. Administration SEP (ed) (2002) Monitoring Method of Water and Wastewater, 4th edn. State Environmental Protection Administration. China Environmental Science Press, Beijing

    Google Scholar 

  13. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Hu H-Y, Yang J, Wu Y-H (2010) Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1. Bioresour Technol 101(24):9819–9821. doi:10.1016/j.biortech.2010.07.103

    Article  CAS  Google Scholar 

  15. Droop MR (1983) 25 Years of algal growth-kinetics—a personal view. Bot Mar 26(3):99–112. doi:10.1515/botm.1983.26.3.99

    Article  Google Scholar 

  16. Borchard JA, Azad HS (1968) Biological extraction of nutrients. J Water Pollut Control Fed 40(10):1739–1754

    Google Scholar 

  17. Wu Y-H, Yang J, Hu H-Y, Yu Y (2013) Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecol Eng 60:155–159. doi:10.1016/j.ecoleng.2013.07.066

    Article  Google Scholar 

  18. Li X, Hu H-Y, Gan K, Sun Y-X (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500. doi:10.1016/j.biortech.2010.02.016

    Article  Google Scholar 

  19. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67(7):696–701. doi:10.1016/j.phytochem.2006.01.010

    Article  CAS  PubMed  Google Scholar 

  20. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back ar the U. S. Department of Energy's Aquatic Species Program: Biodiesel from Algae. vol NREL/TP-580-24190, dated July 1998. National Renewable Energy Lab, Department of Energy, Golden

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Fund of China (Key Program, No. 51138006), the Science Fund for Creative Research Groups (No. 21221004), the Collaborative Innovation Center for Regional Environmental Quality and the Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ying HU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

WU, YH., YU, Y. & HU, HY. Effects of Initial Phosphorus Concentration and Light Intensity on Biomass Yield per Phosphorus and Lipid Accumulation of Scenedesmus sp. LX1. Bioenerg. Res. 7, 927–934 (2014). https://doi.org/10.1007/s12155-014-9411-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9411-2

Keywords

Navigation