Skip to main content

Advertisement

Log in

Advanced Biofuels from Thermochemical Processing of Sustainable Biomass in Europe

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biofuels can play an important role in decreasing the use of fossil fuels, in particular in the transport sector, which absorbs about 30 % of the EU energy requirements. This review illustrates the motivations behind biofuel development, the government incentives and regulations and the current approaches on sustainable biomass conversion in Europe, and provides an overview on the major steps involved in thermochemical processes and on the issues challenging their deployment at large scale, with particular emphasis on the pyrolysis of biomass and bio-oil upgrading using conventional oil refinery settings. Distribution of sustainable biofuels in Europe and future prospects towards achieving success of transport biofuels were also addressed. The literature suggests that importing biofuels and increasing the cost of CO2 to at least €60/t CO2 will be necessary to meet the renewable obligation targets in the EU. Algae represent the future feedstock for biofuels but currently are limited by their high production costs and high N content. Pyrolysis is cost competitive compared to other technologies such as fermentation and gasification, but the quality of bio-oils requires upgrading mainly to lower their oxygen content and enhance their thermal stability. The recent advances in bio-oil upgrading using catalytic cracking and hydro-treating are very promising for the future deployment of advanced biofuels in the coming decades. However, significant investments in applied research and demonstration are still required to meet the 2020/2030 biofuel targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reddy BVS, Ramesh S, Kumar AA, Wani SP, Ortiz R, Ceballos H, Sreedevi TK (2008) Bio-fuel crops research for energy security and rural development in developing countries. Bioenerg Res 1:248–258

    Article  Google Scholar 

  2. Kjärstad J, Johnsson F (2009) Resources and future supply of oil. Energ Policy 37:441–464

    Article  Google Scholar 

  3. IEA (2012) Energy technology perspectives 2012: pathways to a clean energy system. International Energy Agency (IEA), 9 rue de la Fédération, 75739 Paris Cedex 15, Franc.

  4. EU (2000) Towards a European strategy for the security of energy supply/* COM/2000/0769 final */52000DC0769. E.U. Green Paper

  5. Thoen J, Busch R (2006) Industrial chemicals from biomass—industrial concepts. In: Kamm B et al (eds) Biorefineries–industrial processes and products Status quo and future directions. Wiley, Weinheim, pp 347–366, Practical approach book. 2 volumes

    Google Scholar 

  6. Huber GW, Corma A (2007) Synergies between bio and oil-refineries for the production of fuels from biomass. Angew Chem Int-Ed 46

  7. OPEC (2011) http://www.opec.org/opec_web/en/

  8. van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    PubMed  Google Scholar 

  9. Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresource Technol 102:1254–1263

    Article  CAS  Google Scholar 

  10. Panwara NL, Kotharib R, Tyagi VV (2012) Thermo chemical conversion of biomass—eco friendly energy routes. Renew Sust Energ Rev 6:1801–1816

    Article  Google Scholar 

  11. Rosillo-Calle F (2007) Overview of bio-energy. In: Rosillo-Calle F, de Groot P, Hemstock SL, Woods J (eds) The biomass assessment handbook, bio-energy for a sustainable environment. Earthscan, London, pp 1–26

    Google Scholar 

  12. World Commission on Environment and Development (ed) (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  13. Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Develop 17:197–209

    Article  Google Scholar 

  14. Lal R (2007) Bio-fuels from crop residues. Soil Tillage Research 93:237–238

    Article  Google Scholar 

  15. Sterner M, Fritsche U (2011) Greenhouse gas balances and mitigation costs of 70 modern Germany-focused and 4 traditional biomass pathways including land-use change effects. Biomass Bioenerg 35:4797–4814

    Article  CAS  Google Scholar 

  16. Lange JP (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. Bio-fuels Bioprod Bioref 1:39–48

    Article  CAS  Google Scholar 

  17. Demirbas A (2010) Biorefining economy, biorefineries, for biomass upgrading facilities. Springer, London, p 237

    Google Scholar 

  18. Brechbill SC, Tyner WE, Ileleji KE (2011) The economics of biomass collection and transportation and its supply to Indiana cellulosic and electric utility facilities. Bioenerg Res 4:141–152

    Article  Google Scholar 

  19. Rogers JG, Brammer JG (2009) Analysis of transport costs for energy crops for use in biomass pyrolysis plant networks. Biomass Bioenerg 33:1367–1375

    Article  Google Scholar 

  20. Zhang X, Tu M, Paice MG (2011) Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenerg Res 4:246–257

    Article  Google Scholar 

  21. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbial Biotech 64:137–145

    Article  CAS  Google Scholar 

  22. Fischer G, Prieler S, van Velthuizen H, Berndesb G, Faaij A, Londo M, de Wit M (2010) Bio-fuel production potentials in Europe: sustainable use of cultivated land and pastures, part II: land use scenarios. Biomass Bioenerg 34:173–187

    Article  Google Scholar 

  23. Chemopolis (2013) The future is biorefining, July 2013, http://www.chempolis.com/wp-content/uploads/yleisesite_ENG.pdf

  24. Srirangan K, Akawi L, Moo-Young M, Chou CP (2013) Towards sustainable production of clean energy carriers from biomass resources. Applied Energy 100:172–186

    Article  Google Scholar 

  25. Hammond GP, Seth SM (2013) Carbon and environmental footprinting of global bio-fuel production. Appl Energy. doi:10.1016/j.apenergy.2013.01.009

    Google Scholar 

  26. Fischer G, Prieler S, van Velthuizen H, Berndes G, Faaij A, Londo M, de Wit M (2010) Bio-fuel production potentials in Europe: sustainable use of cultivated land and pastures, part II: land use scenarios. Biomass and Bio-energy 34:173–187

    Article  Google Scholar 

  27. Ribeiro LA, da Silva PP (2013) Surveying techno-economic indicators of microalgae bio-fuel technologies. Renew Sustain Energy Rev 25:89–96

    Article  CAS  Google Scholar 

  28. Foust TD, Ibsen KN, Dayton DC, Hess JR, Kenney KE (2008) The bio-refinery. In: Himmel M (ed) Biomass recalcitrance, deconstructing the plant cell wall for bio-energy. Wiley-Blackwell, Oxford, 528 pp

    Google Scholar 

  29. NNFCC (2006) Bio-fuels: from crop to consumer—the UK Bio-fuel supply chain in 2006. The National Non Food Crops Centre Newsletter, issue 6

  30. Fiorese G, Catenacci M, Verdolini E, Bosetti V (2013) Advanced bio-fuels: future perspectives from an expert elicitation survey. Energ Policy. doi:10.1016/j.enpol.2012.12.061

    Google Scholar 

  31. Eurostat (2010) Statistics database. http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database2010. Accessed 3/4/2012

  32. Menegaki AN (2011) Growth and renewable energy in Europe: a random effect model with evidence for neutrality hypothesis. Energ Econ 33:257–263

    Article  Google Scholar 

  33. Biomass Energy Europe (2010) Status of biomass resource assessment. Version 3. D 3.6 Issue 1, FP7 Grant Agreement n. 213417. 30 November 2010.

  34. OECD/IEA (2012) Key world energy statistics, 2012, 82 pg. International Energy Agency (IEA), 9 rue de la Fédération, 75739 Paris Cedex 15, Franc.

  35. Wetterlund E, Leduc S, Dotzauer E, Kindermann G (2012) Optimal localisation of bio-fuel production on a European scale. Energy 41(1):462–472

    Article  Google Scholar 

  36. EC (2008) Communication from the commission-20 20 by 2020-Europe’s climate change opportunity. COM(2008) 30, 23/01/2008.

  37. Fonseca MB, Burrell A, Gay H, Henseler M, Kavallari A, M’Barek R, et al. (2010) In: Burrell A, editor. Impacts of the EU bio-fuel target on agricultural markets and land use: a comparative modelling assessment. European Commission, Joint Research Centre, Institute for Prospective Technological Studies

  38. ERTRAC (2010) The European Road Transport Research Advisory Council, www.ertrac.org/

  39. Forsberg G (2000) Biomass energy transport: analysis of bio-energy transport chains using life cycle inventory method. Biomass Bioenerg 19:17–30

    Article  CAS  Google Scholar 

  40. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation bio-fuel technologies. Bioresour Technol 101:1570–1580

    Article  CAS  PubMed  Google Scholar 

  41. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science 38:449–467

    Article  CAS  Google Scholar 

  42. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  43. Sadhukhan J, Mustafa MA, Misailidis N, Mateos-Salvador F, Du C, Campbell GM (2008) Value analysis tool for feasibility studies of biorefineries integrated with value added production. Chem Eng Sci 63:503–519

    Article  CAS  Google Scholar 

  44. Hustad JE, Skreiberg O, Sonju OK (1995) Biomass combustion research and utilisation in IEA countries. Biomass Bioenerg 9(l-5):235–255

    Article  CAS  Google Scholar 

  45. Marsh R, Steer J, Fesenko E, Cleary V, Rahman A, Griffiths A, Williams K (2008) Biomass and waste co-firing in large-scale combustion systems—technical barriers to achieving carbon reduction targets. P ICE Energy 115–126

  46. Damartzis T, Zabaniotou A (2011) Thermo-chemical conversion of biomass to second generation bio-fuels through integrated process design—a review. Renew Sustain Energy Rev 15:366–378

    Article  CAS  Google Scholar 

  47. Cheah S, Gaston KR, Parent YO, Jarvis MW, Vinzant TB, Smith KM, Thornburg NE, Nimlos MR, Magrini-Bair KA (2013) Nickel cerium olivine catalyst for catalytic gasification of biomass. Appl Catal Environ 134–135:34–45

    Article  Google Scholar 

  48. Nahil MA, Wang X, Wu C, Yang H, Chen H, Williams PT (2013) Novel bi-functional Ni–Mg–Al–CaO catalyst for catalytic gasification of biomass for hydrogen production with in situ CO2 adsorption. RSC Adv 3:5583–5590

    Article  CAS  Google Scholar 

  49. Fermoso J, Rubiera F, Chen D (2012) Sorption enhanced catalytic steam gasification process: a direct route from lignocellulosic biomass to high purity hydrogen. Energy Environ Sci 5:6358–6367

    Article  CAS  Google Scholar 

  50. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73

    Article  CAS  Google Scholar 

  51. Jae J, Tompsett GA, Lin YC, Carlson TR, Shen J, Zhang T, Yang B, Wyman CE, Conner WC, Huber GW (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3:358–365

    Article  CAS  Google Scholar 

  52. Schwaiger N, Feiner R, Zahel K, Pieber A, Witek V, Pucher P, Ahn E, Wilhelm P, Chernev B, Schröttner H, Siebenhofer M (2011) Liquid and solid products from liquid-phase pyrolysis of softwood. Bioenerg Res 4:294–302

    Article  Google Scholar 

  53. Mullen CA, Boateng AA (2011) Production and analysis of fast pyrolysis oils from proteinaceous biomass. Bioenerg Res 4:303–311

    Article  Google Scholar 

  54. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass and Bio-energy 38:68–94

    Article  CAS  Google Scholar 

  55. Minarick M, Zhang Y, Schideman L, Wang Z, Yu G, Funk T, Barker D (2011) Product and economic analysis of direct liquefaction of swine manure. Bioenerg Res 4:324–333

    Article  Google Scholar 

  56. NSF (2008) Breaking the chemical and engineering barriers to lignocellulosic bio-fuels: next generation hydrocarbon biorefineries. Huber GW (editor), University of Massachusetts Amherst, National Science Foundation. Washington DC, pp 180.

  57. Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35

    Article  CAS  Google Scholar 

  58. Rogers JG, Brammer JG (2012) Estimation of the production cost of fast pyrolysis bio-oil. Biomass Bioenerg 36:208–217

    Article  CAS  Google Scholar 

  59. Kuhn JN, Zhao Z, Felix LG, Slimane RB, Choi CW, Ozkan US (2008) Olivine catalysts for methane and tar-steam reforming. Appl Catal B-Environ 81:14–26

    Article  CAS  Google Scholar 

  60. Singh J, Kumar MM, Saxena AK, Kumar S (2005) Reaction pathways and product yields in mild thermal cracking of vacuum residues: a multi-lump kinetic model. Chem Eng J 108:239–248

    Article  CAS  Google Scholar 

  61. Bozzano G, Dente M, Carlucci F (2005) The effect of naphthenic components in the visbreaking modelling. Comp Chem Eng 29:1439–1446

    Article  CAS  Google Scholar 

  62. Speight JG (2004) New approaches to hydroprocessing. Catal Today 98:55–60

    Article  CAS  Google Scholar 

  63. Del Bianco A, Garuti G, Pirovano C, Russo R (1995) Thermal cracking of petroleum residues: 3. Technical and economic aspects of hydrogen donor visbreaking. Fuel 74(5):756–760

    Article  Google Scholar 

  64. Ogbuneke KU, Snape CE, Andrésen JM, Crozier S, Russell C, Sharpe R (2009) Identification of a polycyclic aromatic hydrocarbon indicator for the onset of coke formation during visbreaking of a vacuum residue. Energ Fuel 23(4):2157–2163

    Article  CAS  Google Scholar 

  65. Sanna A, Ogbuneke KU, Andrésen JM (2009) Bio-coke from upgrading of pyrolysis bio-oil for co-firing. Fuel 88:2340–2347

    Article  CAS  Google Scholar 

  66. Sanna A, Ogbuneke KU, Andrésen JM (2012) Upgrading bio-oils obtained from bio-ethanol and bio-diesel production residues into high quality bio-crudes using vis-breaking. Green Chem 14:2294–2304

    Article  CAS  Google Scholar 

  67. Weisz PB, Rodewald PG (1979) Catalytic production of high-grade fuel (gasoline) from biomass compounds by shape-selective catalysts. Science 206:57

    Article  CAS  PubMed  Google Scholar 

  68. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  69. Lappas AA, Bezergiann SI, Vasalos IA (2009) Production of bio-fuels via co-processing in conventional refining processes. Catalysis Today 145:55–62

    Article  CAS  Google Scholar 

  70. Haniff MI, Dao LH (1998) Deoxygenation of carbohydrates and their isopropylidene derivatives over ZSM-5 zeolite catalysts. Appl Catal 39(1–2):33–47

    Google Scholar 

  71. Park HJ, Dong JI, Jeon JK, Yoo KS, Yim JH, Sohn JM, Park JK (2007) Conversion of the pyrolytic vapor of radiata pine over zeolites. J Ind Eng Chem 13(2):182–189

    CAS  Google Scholar 

  72. Samolada MC, Papafotica A, Vasalos IA (1998) Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuels 77(14):1667–1675

    Article  CAS  Google Scholar 

  73. Sanna A, Li S, Linforth R, Smart KA, Andrésen JM (2011) Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina. Bioresour Technol 102(22):10695–10703

    Article  CAS  PubMed  Google Scholar 

  74. Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Øye G (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor Mesopor Mat 96:93–101

    Article  CAS  Google Scholar 

  75. Sanna A, Andrésen JM (2012) Bio-oil deoxygenation by catalytic pyrolysis: novel catalysts for the production of bio-fuels and bio-chemicals. ChemSusChem 5(10):1944–1956

    Article  CAS  PubMed  Google Scholar 

  76. Rapagná S, Jand N, Kiennemann A, Foscolo PU (2000) Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenerg 19:187

    Article  Google Scholar 

  77. Cheng Y-T, Jae J, Shi J, Fan W, Huber GW (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem Int Ed 51:1387–1390

    Article  CAS  Google Scholar 

  78. Cheng Y-T, Wang Z, Gilbert CJ, Fan W, Huber GW (2012) Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. Angew Chem Int Ed 51:11097–11100

    Article  CAS  Google Scholar 

  79. Zhang H, Xiao R, Jin B, Xiao G, Chen R (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262

    Article  CAS  PubMed  Google Scholar 

  80. Du Z, Hu B, Ma X, Cheng Y, Liu Y, Lin X, Wan Y, Lei H, Chen P, Ruan R (2013) Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids. Bioresour Technol 130:777–782

    Article  CAS  PubMed  Google Scholar 

  81. Wang K, Brown RC (2013) Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem 15:675–681

    Article  CAS  Google Scholar 

  82. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21:1792–1815

    Article  CAS  Google Scholar 

  83. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A-General 199:147–190

    Article  CAS  Google Scholar 

  84. Elliott DC, Hart TR (2009) Catalytic hydroprocessing of chemical models for bio-oil. Energ Fuel 23:631–637

    Article  CAS  Google Scholar 

  85. Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Solantausta Y (2012) Catalytic hydroprocessing of fast pyrolysis bio-oil from pine sawdust. Energy Fuels 26:3891–3896

    Article  CAS  Google Scholar 

  86. Fogassy G, Thegarid N, Toussaint G, van Veen AC, Schuurman Y, Mirodatos C (2010) Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl Catal B 96:476–485

    Article  CAS  Google Scholar 

  87. Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW (2010) Renewable chemical commodity. Feedstocks from integrated catalytic processing of pyrolysis oils. Science 330:1222–1227

    Article  CAS  PubMed  Google Scholar 

  88. de Miguel MF, Groeneveld MJ, Kersten SRA, Way NWJ, Schaverien CJ, Hogendoorn KJA (2010) Production of advanced bio-fuels: co-processing of upgraded pyrolysis oil in standard refinery units. Appl Catal B 96:57–66

    Article  Google Scholar 

  89. Furimsky E (2013) Hydroprocessing challenges in bio-fuels production. Catalysis Today. doi:10.1016/j.cattod.2012.11.008

    Google Scholar 

  90. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int-Edi 48(22):3987–3990

    Article  CAS  Google Scholar 

  91. Huber GW, Cortright RD, Dumestic JA (2004) Renewable alkanes by aqueous phase reforming of biomass-derived oxygenates. Angew Chem Int-Edi 43:1549–1551

    Article  CAS  Google Scholar 

  92. Vispute TP, Huber GW (2009) Production of hydrogen, alkanes and polyols by aqueous-phase processing of wood-derived pyrolysis oils. Green Chem 11:1433–1445

    Article  CAS  Google Scholar 

  93. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl Catal B-Environ 56:171–186.72

    Article  CAS  Google Scholar 

  94. Shiramizu M, Toste FD (2013) Deoxygenation of biomass-derived feedstocks: oxorhenium- catalyzed deoxydehydration of sugars and sugar alcohols. Angew Chem Int Ed 51:8082–8086

    Article  Google Scholar 

  95. de Miguel MF, Groeneveld MJ, Kersten SRA, Geantet C, Toussaint G, Way NWJ, Schaverien CJ, Hogendoorn KJA (2011) Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy Environ Sci 4:985–997

    Article  Google Scholar 

  96. Neste Oil (2013) http://www.nesteoil.com

  97. UOP (2013) http://www.uop.com

  98. Carpentieri M, Corti A, Lombardi L (2005) Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energ Conver Manage 46:1790–1808

    Article  CAS  Google Scholar 

  99. Caserini S, Livio S, Giugliano M, Grosso M, Rigamonti L (2010) LCA of domestic and centralized biomass combustion: the case of Lombardy (Italy). Biomass Bioenerg 34(4):474–482

    Article  CAS  Google Scholar 

  100. C&I Engineering (2013) http://www.cieng.com/editorupload/image/refinery-map.jpg

  101. Mahfud FH, Ghijsen F, Heeres HJ (2007) Hydrogenation of fast pyrolysis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. J Mol Catal A-Chem 264:227–236

    Google Scholar 

  102. Valle B, Gayubo AG, Atutxa A, Alonso A, Bilbao J (2007) Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. Int J Chem Reactor Eng 5:A86

    Article  Google Scholar 

  103. Nokkosmaki MI, Kuoppala ET, Leppamaki EA, Krause AOI (2000) Catalytic conversion of biomass pyrolysis vapours with zinc oxide. J Anal Appl Pyrolysis 55:19–31

    Article  Google Scholar 

  104. Mahfud FH, Melin-Cabrera I, Manurung R, Heeres HJ (2007) Biomass to fuels: upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts. Trans IChemE, Part B, Process Saf Environ Prot 85(B5):466–472

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Centre for Innovation in Carbon Capture and Storage, Heriot-Watt University (EPSRC grant no. EP/F012098/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimaro Sanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanna, A. Advanced Biofuels from Thermochemical Processing of Sustainable Biomass in Europe. Bioenerg. Res. 7, 36–47 (2014). https://doi.org/10.1007/s12155-013-9378-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9378-4

Keywords

Navigation