Skip to main content

Advertisement

Log in

The Significance of Pollination Services for Biodiesel Feedstocks, with Special Reference to Jatropha curcas L.: A Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The importance of pollination services for insect-pollinated crops in general, and for the major biodiesel crops, such as Jatropha curcas L., in particular, is reviewed. The dependence of the major biodiesel feedstocks on pollinators ranges from almost zero to low dependence in soybean, through low to medium dependence in rapeseed, and up to high dependence in the African oil palm and in J. curcas. Currently, the basic requirement of J. curcas for pollination services is largely neglected. In light of the enormous scale of existing and future plantations of J. curcas, and of the effective pollination by native pollinators in most commercial crops, it is clear that the local insect fauna of any given habitat, on any continent, will not be able to satisfy the pollination requirements of any plantation, once it becomes established and starts blooming. It is suggested that the best way to address the pending catastrophe of severely reduced yields in J. curcas plantations that would result from reduced reproductive success would be to use honeybees as the prime pollinators, regardless of the pollination services provided by the local insect fauna. Basic research on the contribution of honeybees to the reproductive success of J. curcas should be carried out and used as a guideline for planning future provision of proper honeybee pollination services in any given plantation, characterized by its specific size, age, planting density, soil type, irrigation, fertilization, and climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

E. kamerunicus :

Elaeidobius kamerunicus

FAAE:

Fatty acid alkyl esters

FAO:

Food and Agriculture Organization of the United Nations

J. curcas :

Jatropha curcas

MMT:

Million metric tons

Spp:

Species

USA:

United States of America

References

  1. Moser BR (2009) Biodiesel production, properties, and feedstocks. In Vitro Cell Dev Biol—Plant 45:229–266

    Article  CAS  Google Scholar 

  2. International Grains Council (2008) Grain market trends in the stockfeed and biodiesel industries. Aust Grain 17:30–31

    Google Scholar 

  3. Knothe G (2001) Analytical methods used in the production and fuel quality assessment of biodiesel. Trans ASAE 44:193–200

    CAS  Google Scholar 

  4. Food and Agriculture Organization of the United Nations (FAO) (2008) The state of food and agriculture. Biofuels: prospects, risks and opportunities. FAO, Rome. http://www.fao.org/docrep/011/i0100e/i0100e00.htm

  5. McGregor SE (1976) Insect pollination of cultivated crop plants. United States Department of Agriculture Handbook no. 496. United States Department of Agriculture, Washington DC

    Google Scholar 

  6. Free JB (1993) Insect pollination of crops, 2nd edn. Academic, San Diego

    Google Scholar 

  7. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Eco Sys 29:83–112

    Article  Google Scholar 

  8. Gallai NG, Salles JM, Settele J (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  9. Roubik DW (1995) Pollination of cultivated plants in the tropics. FAO Agricultural Services, Rome, Bulletin no. 118

    Google Scholar 

  10. Klein AM, Bernard EV, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C et al (2009) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol Sci 274:303–313

    Article  Google Scholar 

  11. Kevan PG, Phillips TP (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conservat Ecol 5(1):8, http://www.consecol.org/vol5/iss1/art8/

    Google Scholar 

  12. Sedgley M, Griffin AR (1989) Sexual reproduction of tree crops. Academic, London

    Google Scholar 

  13. Shivanna KR, Sawhney VK (1997) Pollen biology and pollen biotechnology: an introduction. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 1–12

    Chapter  Google Scholar 

  14. Hopping ME, Jerram EM (1980) Supplementary pollination of tree fruits. I. Development of suspension media. N Z J Agric Res 23:517–521

    Article  Google Scholar 

  15. Vaknin Y, Gan-Mor S, Bechar A, Ronen B, Eisikowitch D (2002) Effects of pollen supplementation on cropping success and fruit quality of pistachio (Pistacia vera L.; Anacardiaceae). Plant Breed 121:451–455

    Article  Google Scholar 

  16. Gan-Mor S, Bechar A, Ronen B, Eisikowitch D, Vaknin Y (2003) Electrostatic pollen applicator development and tests for almond, kiwi, date and pistachio—an overview. Appl Eng Agric 19:119–124

    Google Scholar 

  17. Scott-Dupree CD, Winston ML (1987) Wild bee pollinator diversity and abundance in orchard and uncultivated habitats in the Okanagan Valley, British Columbia. Can Entomol 119:735–745

    Article  Google Scholar 

  18. Food and Agricultural Organization of the United Nations (FAO) (2005) Protecting the pollinators. Agriculture and Consumer Protection Department Magazine. http://www.fao.org/Ag/Magazine/0512sp1.htm. Accessed Dec 2005.

  19. Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc Lond B Biol Sci 270:955–961

    Article  Google Scholar 

  20. Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271

    Article  Google Scholar 

  21. Chacoff NP, Aizen MA (2006) Edge effects on flower-visiting insects in grapefruit plantations bordering premontane subtropical forest. J Appl Ecol 43:18–27

    Article  Google Scholar 

  22. Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373

    Article  PubMed  Google Scholar 

  23. Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652

    Article  PubMed  Google Scholar 

  24. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18:1572–1575

    Article  PubMed  CAS  Google Scholar 

  25. Palmer RG, Perez PT, Ortiz-Perez E, Maalouf F, Suso MJ (2009) The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: from a breeding perspective. Euphytica 170:35–52

    Article  Google Scholar 

  26. Frankel R, Galun E (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin

    Book  Google Scholar 

  27. Watanabe ME (1994) Pollination worries rise as honey bees decline. Science 265:1170

    Article  PubMed  CAS  Google Scholar 

  28. Morse RA, Calderone NW (2000) The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult Mag 128:1–15

    Google Scholar 

  29. Walstrom RJ (1958) Effects of flight distances from honey bee colonies on red clover seed yields. J Econ Entomol 51:64–67

    Google Scholar 

  30. Erickson EH, Berger GA, Shannon JG, Robins JM (1978) Honey bee pollination increases soybean yields in the Mississippi delta region of Arkansas and Missouri. J Econ Entomol 71:601–603

    Google Scholar 

  31. Manning R, Wallis IR (2005) Seed yields in canola (Brassica napus cv. Karoo) depend on the distance of plants from honeybee apiaries. Aust J Exp Agric 45:1307–1313

    Article  Google Scholar 

  32. Cambray G (2007) The all important bees in the biodiesel equation. Science in Africa. http://www.scienceinafrica.co.za/2007/april/beesbiodiesel.htm. Accssed April 2007.

  33. Mesquida J, Marilleau R, Pham-Delegue M, Renard M (1988) A study of rapeseed (Brassica napus L. var. Oleifera Metzger) flower nectar secretions. Apidologie 19:307–318

    Article  CAS  Google Scholar 

  34. Hayter K, Cresswell JE (2006) The influence of pollinator abundance on the dynamics and efficiency of pollination in agricultural Brassica napus: implications for landscape-scale gene dispersal. J Appl Ecol 43:1196–1202

    Article  Google Scholar 

  35. Eisikowitch D (1981) Some aspects of pollination of oil-seed rape (Brassica napus L.). J Agric Sci Camb 96:321–326

    Article  Google Scholar 

  36. Cresswell JE, Davies TW, Patrick MA, Russell F, Pennel C, Vicot M et al (2004) Aerodynamics of wind pollination in a zoophilous flower, Brassica napus. Funct Ecol 18:861–866

    Article  Google Scholar 

  37. Free JB, Nuttall PM (1968) The pollination of oilseed rape (Brassica napus) and the behaviour of bees on the crop. J Agric Sci Camb 71:91–94

    Article  Google Scholar 

  38. Williams IH, Martin AP, White RP (1986) The pollination requirements of oil-seed rape (Brassica napus L.). J Agric Sci Camb 106:27–30

    Article  Google Scholar 

  39. Mesquida J, Renard M, Pierre JS (1988) Rapeseed (Brassica napus L.) productivity: the effect of honeybees (Apis mellifera L.) and different pollination conditions in cage and field tests. Apidologie 19:51–72

    Article  Google Scholar 

  40. Oz M, Karasu A, Cakmak I, Goksoy AT, Ozmen N (2008) Effect of honeybees pollination on seed setting, yield and quality characteristics of rapeseed (Brassica napus oleifera). Indian J Agric Sci 78:680–683

    Google Scholar 

  41. Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic and genetically modified Canola. Ecol Appl 15:871–881

    Article  Google Scholar 

  42. Kevan PG, Eisikowitch D (1990) The effects of insect pollination on canola (Brassica napus L. cv. O.A.C Triton) seed germination. Euphytica 45:39–41

    Google Scholar 

  43. Pierrel J, Vaissi'ere B, Vall'ee P, Renard M (2009) Efficiency of airborne pollen released by honeybee foraging on pollination in oilseed rape: a wind insect-assisted pollination. Apidologie 41:109–115

    Article  Google Scholar 

  44. Hoyle M, Hayter K, Cresswell JE (2007) Effect of pollinator abundance on self-fertilization and gene flow: application to GM canola. Ecol Appl 17:2123–2135

    Article  PubMed  Google Scholar 

  45. Rubis DD (1970) Breeding insect pollinated crops. Arkansas Agricultural Extension Service 127:19–24

    Google Scholar 

  46. Erickson EH, Garment MB (1979) Soya-bean flowers: nectar ultrastructure, nectar guides, and orientation on the flower by foraging honeybees. J Apic Res 18:3–11

    Google Scholar 

  47. Palmer RG, Gai J, Sun H, Burton JW (2001) Production and evaluation of hybrid soybean. Plant Breed Rev 21:263–307

    CAS  Google Scholar 

  48. Chiari WC, de Toledo VDA, Hoffmann-Campo CB, Ruvolo-Takasusuki MCC, Claudia M, de Toledo TCSDA et al (2008) Pollination by Apis mellifera in transgenic soy (Glycine max (L.) Merrill) roundup ready (TM) cv. BRS 245 RR and conventional cv. BRS 133. Acta Sci-Agron 30:267–271

    Google Scholar 

  49. Sundram K, Sambanthamurthi R, Yew-Ai Tan Y (2003) Palm fruit chemistry and nutrition. Asia Pac J Clin Nutr 12:355–362

    PubMed  CAS  Google Scholar 

  50. Wrigley G (1969) Tropical agriculture. Faber and Faber, London, p 376

    Google Scholar 

  51. Hardon JJ, Turner PD (1967) Observations on natural pollination in commercial plantings of oil palm (Elaeis guineensis) in Malaya. Exp Agric 3:105–116

    Article  Google Scholar 

  52. Sparnaaij LD (1969) Oil palm. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. H. Veenman and Zonen, N.V, Wageningen, pp 339–387

    Google Scholar 

  53. Syed RA (1979) Studies on oil palm pollination. Bull Entomol Res 69:213–224

    Article  Google Scholar 

  54. Tandon R, Manohara TN, Nijalingappa BHM, Shivana KR (2001) Pollination and pollen-pistil interaction in oil palm, Elaeis guineensis. Ann Bot 87:831–838

    Article  Google Scholar 

  55. Basri MW (1984) Developments of the oil palm pollinator Elaeidobious kamerunicus in Malaysia. Palm Oil Develop 2:1–3

    Google Scholar 

  56. Caudwell RW, Hunt D, Reid A, Mensah BA, Chinchilla C (2003) Insect pollination of oil palm—a comparison of the long term viability and sustainability of Elaeidobious kamerunicus in Papua New Guinea, Indonesia, Costa Rica, and Ghana. ASD Oil Palm Papers 25:1–16

    Google Scholar 

  57. Ming KS (1999) The Elaeidobious kamerunicus story. Planter 75:143–150

    Google Scholar 

  58. Rao V, Law IH (1998) The problem of poor fruit set in parts of East Malaysia. Planter 74:463–483

    Google Scholar 

  59. Tandon R, Chaudhury R, Shivana KR (2007) Cryopreservation of oil palm pollen. Curr Sci 92:182–183

    Google Scholar 

  60. Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biom Bioenerg 19:1–15

    Article  Google Scholar 

  61. Pant KS, Khosla V, Kumar D, Gairola S (2006) Seed oil content variation in Jatropha curcas Linn. in different altitudinal ranges and site conditions in H.P. India. Lyonia 11:31–34

    Google Scholar 

  62. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops and Prod 28:1–10

    Article  CAS  Google Scholar 

  63. de Oliveira JS, Leite PM, de Souza LB, Mello VM, Silva EC, Rubim JC et al (2009) Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biom Bioenerg 33:449–453

    Article  Google Scholar 

  64. King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham I (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905

    Article  PubMed  CAS  Google Scholar 

  65. Bhattacharya A, Datta K, Datta SK (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460

    Article  Google Scholar 

  66. Tewari DN (2007) Jatropha and biodiesel, 1st edn. Ocean Books Ltd, New Delhi

    Google Scholar 

  67. Chang-wei L, Kun L, You C, Yong-yu S (2007) Floral display and breeding system of Jatropha curcas L. For Stud China 2007:114–119

    Google Scholar 

  68. Kaur K, Dhillon GPS, Gill RIS (2011) Floral biology and breeding system of Jatropha curcas in North-Western India. J Tropic For Sci 23:4–9

    Google Scholar 

  69. Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398

    Google Scholar 

  70. Prakash AR, Patolia JS, Chikara J, Boricha GN (2007) Floral biology and flowering behaviour of Jatropha curcas. In: FACT seminar on Jatropha curcas L. agronomy and genetics, Wageningen, the Netherlands: March 26–28. FACT Foundation, Wageningen, Article no. 2

    Google Scholar 

  71. Dhillon RS, HoodaMS HAK, Ahlawat KS, Kumar Y, Subhash SN (2006) Clonal propagation and reproductive biology of Jatropha curcas L. Indian J Agroforest 8:18–27

    Google Scholar 

  72. Kun L, Wei-Lun Y, Chang-Wei L (2007) Breeding system and pollination ecology in Jatropha curcas. For Res 20:775–781

    Google Scholar 

  73. Rianti P, Suryobroto B, Atmowidi T (2010) Diversity and effectiveness of insect pollinators of Jatropha curcas L. (Euphorbiaceae). Hayati J Bios 17:38–42

    Article  Google Scholar 

  74. Raju AJS, Rao SP (2003) Interaction between Jatropha curcas L. (Euphorbiaceae) and insects. Insect Environ 9:25

    Google Scholar 

  75. Qing Y, Ping PD, Biao DZ, Liang WZ, Xiang SQ (2007) Study on pollination biology of Jatropha curcas (Euphorbiaceae). J S China Agric Univ 28:62–66

    Google Scholar 

  76. Abdelgadir HA, Johnson SD, Van Staden J (2008) Approaches to improve seed production of Jatropha curcas L. Drakensville resort, South Africa Proceedings of the 34th Annual Conference of the South African Association of Botanists (SAAB), p 359.

  77. Chang-Wei L, Ku L, Xiao-Ming C, You C, Yong-Yu S (2008) Foraging and main pollinators of Jatropha curcas in dry-hot valley. Kunchong Zhishi 45:121–127

    Google Scholar 

  78. Jongschaap REE, Corre WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L.: global Jatropha curcas evaluation, breeding and propagation programme. Report 158. Plant Research International Wageningen, the Netherlands.

  79. Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socioeconomic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29:12–24

    Article  Google Scholar 

  80. Gonsalves JB (2006) An assessment of the biofuels industry in India. UNCTAD/DITC/TED/2006/6. United Nations Conference on Trade and Development, Geneva

    Google Scholar 

  81. Fairless D (2007) Biofuel: the little shrub that could—maybe. Nature 449:652–655

    Article  PubMed  Google Scholar 

  82. Sanderson K (2009) Wonder weed fails to flourish. Nature 461:328–329

    Article  PubMed  CAS  Google Scholar 

  83. Carels N (2009) Jatropha curcas: a review. Adv Bot Res 50:39–86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiftach Vaknin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaknin, Y. The Significance of Pollination Services for Biodiesel Feedstocks, with Special Reference to Jatropha curcas L.: A Review. Bioenerg. Res. 5, 32–40 (2012). https://doi.org/10.1007/s12155-011-9142-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9142-6

Keywords

Navigation