Skip to main content
Log in

Deep learning-based attenuation correction for brain PET with various radiotracers

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

Attenuation correction (AC) is crucial for ensuring the quantitative accuracy of positron emission tomography (PET) imaging. However, obtaining accurate μ-maps from brain-dedicated PET scanners without AC acquisition mechanism is challenging. Therefore, to overcome these problems, we developed a deep learning-based PET AC (deep AC) framework to synthesize transmission computed tomography (TCT) images from non-AC (NAC) PET images using a convolutional neural network (CNN) with a huge dataset of various radiotracers for brain PET imaging.

Methods

The proposed framework is comprised of three steps: (1) NAC PET image generation, (2) synthetic TCT generation using CNN, and (3) PET image reconstruction. We trained the CNN by combining the mixed image dataset of six radiotracers to avoid overfitting, including [18F]FDG, [18F]BCPP-EF, [11C]Racropride, [11C]PIB, [11C]DPA-713, and [11C]PBB3. We used 1261 brain NAC PET and TCT images (1091 for training and 70 for testing). We did not include [11C]Methionine subjects in the training dataset, but included them in the testing dataset.

Results

The image quality of the synthetic TCT images obtained using the CNN trained on the mixed dataset of six radiotracers was superior to those obtained using the CNN trained on the split dataset generated from each radiotracer. In the [18F]FDG study, the mean relative PET biases of the emission-segmented AC (ESAC) and deep AC were 8.46 ± 5.24 and − 5.69 ± 4.97, respectively. The deep AC PET and TCT AC PET images exhibited excellent correlation for all seven radiotracers (R2 = 0.912–0.982).

Conclusion

These results indicate that our proposed deep AC framework can be leveraged to provide quantitatively superior PET images when using the CNN trained on the mixed dataset of PET tracers than when using the CNN trained on the split dataset which means specific for each tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Phelps ME. PET: molecular imaging and its biological applications. New York: Springer; 2012.

    Google Scholar 

  2. Watanabe M, Shimizu K, Omura T, Takahashi M, Kosugi T, Yoshikawa E, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci. 2002;49(3):634–9.

    Article  Google Scholar 

  3. Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, et al. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol. 2017;62(17):7148–66.

    Article  CAS  Google Scholar 

  4. Tashima H, Yoshida E, Iwao Y, Wakizaka H, Maeda T, Seki C, et al. First prototyping of a dedicated PET system with the hemisphere detector arrangement. Phys Med Biol. 2019;64(6):065004.

    Article  CAS  Google Scholar 

  5. Berker Y, Li Y. Attenuation correction in emission tomography using the emission data—a review. Med Phys. 2016;43(2):807–32.

    Article  Google Scholar 

  6. Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging. 2012;31(12):2224–33.

    Article  Google Scholar 

  7. Kobayashi T, Kitamura K. A solution for scaling problem in joint estimation of activity and attenuation. In: 2017 IEEE nuclear science symposium and medical imaging conference (NSS/MIC); 2017. https://doi.org/10.1109/NSSMIC.2017.8532856.

  8. Marinelli M, Positano V, Tucci F, Neglia D, Landini L. Automatic PET-CT image registration method based on mutual information and genetic algorithms. Sci World J. 2012;2012:567067. https://doi.org/10.1100/2012/567067.

    Article  Google Scholar 

  9. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52(9):1392–9.

    Article  Google Scholar 

  10. Hashimoto F, Ohba H, Ote K, Teramoto A, Tsukada H. Dynamic PET image denoising using deep convolutional neural networks without prior training datasets. IEEE Access. 2019;7:96594–603.

    Article  Google Scholar 

  11. Hashimoto F, Ohba H, Ote K, Kakimoto A, Tsukada H, Ouchi Y. 4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network. Phys Med Biol. 2021;66(1):015006.

    Article  CAS  Google Scholar 

  12. Reader AJ, Corda G, Mehranian A, da Costa-Luis C, Ellis S, Schnabel JA. Deep learning for PET image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2021;5(1):1–25.

    Article  Google Scholar 

  13. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.

    Article  Google Scholar 

  14. Lee JS. A review of deep learning-based approaches for attenuation correction in positron emission tomography. IEEE Trans Radiat Plasma Med Sci. 2021;5(2):160–84.

    Article  Google Scholar 

  15. Shiri I, Arabi H, Geramifar P, Hajianfar G, Ghafarian P, Rahmim A, et al. Deep-JASC: joint attenuation and scatter correction in whole-body 18F-FDG PET using a deep residual network. Eur J Nucl Med Mol Imaging. 2020;47(11):2533–48. https://doi.org/10.1007/s00259-020-04852-5.

    Article  PubMed  Google Scholar 

  16. Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imaging. 2019;46(13):2746–59.

    Article  Google Scholar 

  17. Yang J, Park D, Gullberg GT, Seo Y. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18F-FDG PET. Phys Med Biol. 2019;64(7):075019.

    Article  Google Scholar 

  18. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learning approach for 18F-FDG PET attenuation correction. EJNMMI Phys. 2018;5(1):24. https://doi.org/10.1186/s40658-018-0225-8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, La Fougère C, et al. Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with generative adversarial networks. EJNMMI Res. 2020;10(1):53. https://doi.org/10.1186/s13550-020-00644-y.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Armanious K, Küstner T, Reimold M, Nikolaou K, La Fougère C, Yang B, et al. Independent brain 18F-FDG PET attenuation correction using a deep learning approach with generative adversarial networks. Hell J Nucl Med. 2019;22(3):179–86. https://doi.org/10.1967/s002449911053.

    Article  PubMed  Google Scholar 

  21. Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64(21):215016.

    Article  Google Scholar 

  22. Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65(21):215010.

    Article  CAS  Google Scholar 

  23. Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65(5):055011.

    Article  CAS  Google Scholar 

  24. Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59(10):1624–9.

    Article  CAS  Google Scholar 

  25. Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60(8):1183–9.

    Article  Google Scholar 

  26. Arabi H, Zaidi H. Deep learning-guided estimation of attenuation correction factors from time-of-flight PET emission data. Med Image Anal. 2020;64:101718.

    Article  Google Scholar 

  27. Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. Deep learning-guided joint attenuation and scatter correction in multi-tracer neuroimaging studies. Hum Brain Mapp. 2020;41(13):3667–79.

    Article  Google Scholar 

  28. Harada N, Nishiyama S, Kanazawa M, Tsukada H. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex 1 imaging in the living brain. J Label Compd Radiopharm. 2013;56(11):553–61.

    Article  CAS  Google Scholar 

  29. Boutin H, Chauveau F, Thominiaux C, Grégoire MC, James ML, Trebossen R, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med. 2007;48(4):573–81.

    Article  CAS  Google Scholar 

  30. Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12(3):235–48.

    Article  Google Scholar 

  31. Hashimoto F, Kakimoto A, Ota N, Ito S, Nishizawa S. Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Radiol Phys Technol. 2019;12(2):210–5.

    Article  Google Scholar 

  32. Hashimoto F, Ote K, Oida T, Teramoto A, Ouchi Y. Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach. Appl Sci. 2020;10(6):1902.

    Article  CAS  Google Scholar 

  33. Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Emis2Trans: attenuation correction for brain PET with many types of PET ligands using convolutional neural networks. In: 2019 IEEE nuclear science symposium and medical imaging conference (NSS/MIC); 2019. https://doi.org/10.1109/NSS/MIC42101.2019.9059961.

  34. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci MICCAI. 2015;2015:234–41. https://doi.org/10.1007/978-3-319-24574-4_28.

    Article  Google Scholar 

  35. Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48(10):1405–22.

    Article  Google Scholar 

  36. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr. 1998;22(2):324–33.

    Article  CAS  Google Scholar 

  37. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44(2):291–315.

    PubMed  Google Scholar 

  38. Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn. 1986;19(1):41–7.

    Article  Google Scholar 

  39. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43(9):1137–43.

    PubMed  Google Scholar 

  40. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning dense volumetric segmentation from sparse annotation. Lect Notes Comput Sci MICCAI. 2016;2016(3d):424–32. https://doi.org/10.1007/978-3-319-46723-8_49.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Norohiro Harada, Dr. Hideo Tsukada, and Dr. Hiroyuki Ohba from the Central Research Laboratory, Hamamatsu Photonics K.K for constructive advice. The authors also would like to thank the staff of Hamamatsu Medical Imaging Center and the staff of Hamamatsu Photonics K.K. for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumio Hashimoto or Masanori Ito.

Ethics declarations

Conflict of interest

F.H., M.I., K.O, T.I., and H.O. are employees of Hamamatsu Photonics K.K. The company had no control over the interpretation, writing, or publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, F., Ito, M., Ote, K. et al. Deep learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med 35, 691–701 (2021). https://doi.org/10.1007/s12149-021-01611-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01611-w

Keywords

Navigation