Skip to main content
Log in

Semi-quantification of renal perfusion using 99mTc-DTPA in systolic heart failure: a feasibility study

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Background

Renal scintigraphy with 99mTc-diethylenetriaminepentaacetic acid (DTPA) may be used to study renal perfusion (RP) in heart failure (HF) patients. The goal of this study was to establish a new method to assess RP in patients with systolic HF.

Methods

In this retrospective, single-center, observational study, 86 subjects with left ventricular ejection fraction ≤ 45% and 31 age-matched subjects without HF underwent renal scintigraphy with 99mTc-DTPA. Patients with HF were classified into two categories according to the New York Heart Association (NYHA) functional class, i.e., moderate HF with NYHA functional class I or II and severe HF with NYHA functional class III or IV. The first-pass time-activity curve of the renal scintigraph was recorded. The GFR was determined by Gates' method. The time to peak perfusion activity (Tp), the slope of the perfusion phase (Sp), the slope of the washout phase (Sw), and glomerular filtration rate (GFR) in the study were obtained. Differences between groups were assessed by one-way analysis of variance with the Bonferroni post hoc test and rank-sum test.

Results

RP in HF was impaired despite comparable GFRs between the control and HF groups. RP in HF was characterized by a longer Tp and a shallower Sp and Sw. The primary parameter (Tp) was significantly prolonged in patients with HF (41.63 ± 12.22 s in severe HF vs. 26.95 ± 6.26 s in moderate HF vs. 17.84 ± 3.17 s in control, P < 0.001). At a cutoff point of 22 s, there was a high sensitivity (0.895) and specificity (0.935) in identifying patients with HF.

Conclusions

Renal scintigraphy with 99mTc-DTPA may represent a new and useful method to noninvasively monitor RP abnormalities in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forman DE, Butler J, Wang Y, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43(1):61–7.

    Article  Google Scholar 

  2. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  Google Scholar 

  3. Mullens W, Nijst P. Cardiac output and renal dysfunction. J Am Coll Cardiol. 2016;67(19):2209–12.

    Article  Google Scholar 

  4. Zamora E, Lupon J, Vila J, et al. Estimated glomerular filtration rate and prognosis in heart failure: value of the Modification of Diet in Renal Disease Study-4, chronic kidney disease epidemiology collaboration, and cockroft-gault formulas. J Am Coll Cardiol. 2012;59(19):1709–15.

    Article  Google Scholar 

  5. Hanberg JS, Sury K, Wilson FP, et al. Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol. 2016;67(19):2199–208.

    Article  Google Scholar 

  6. Jessup M, Costanzo MR. The cardiorenal syndrome: do we need a change of strategy or a change of tactics? J Am Coll Cardiol. 2009;53(7):597–9.

    Article  Google Scholar 

  7. Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39(Suppl 4):10–21 (discussion 22-14).

    Article  Google Scholar 

  8. Kula AJ, Hanberg JS, Wilson FP, et al. Influence of titration of neurohormonal antagonists and blood pressure reduction on renal function and decongestion in decompensated heart failure. Circ Heart Fail. 2016;9(1):e002333.

    Article  CAS  Google Scholar 

  9. Verbrugge FH, Dupont M, Steels P, et al. The kidney in congestive heart failure: “are natriuresis, sodium, and diuretics really the good, the bad and the ugly?” Eur J Heart Fail. 2014;16(2):133–42.

    Article  CAS  Google Scholar 

  10. Afsar B, Ortiz A, Covic A, Solak Y, Goldsmith D, Kanbay M. Focus on renal congestion in heart failure. Clin Kidney J. 2016;9(1):39–47.

    Article  CAS  Google Scholar 

  11. Tang WH, Kitai T. Intrarenal Venous Flow: A Window Into the Congestive Kidney Failure Phenotype of Heart Failure? JACC Heart failure. 2016;4(8):683–6.

    Article  Google Scholar 

  12. Murray AW, Barnfield MC, Waller ML, Telford T, Peters AM. Assessment of glomerular filtration rate measurement with plasma sampling: a technical review. J Nucl Med Technoly. 2013;41(2):67–75.

    Article  Google Scholar 

  13. Taylor AT. Radionuclides in nephrourology, Part 2: pitfalls and diagnostic applications. J Nucl Med. 2014;55(5):786–98.

    Article  CAS  Google Scholar 

  14. Yazici B, Oral A, Gokalp C, Akgun A, Toz H, Hoscoskun C. A new quantitative index for baseline renal transplant scintigraphy with 99mTc-DTPA in evaluation of delayed graft function and prediction of 1-year graft function. Clin Nucl Med. 2016;41(3):182–8.

    Article  Google Scholar 

  15. Taylor A, Nally J, Aurell M, et al. Consensus report on ACE inhibitor renography for detecting renovascular hypertension. Radionuclides in Nephrourology Group. Consensus Group on ACEI Renography. J Nucl Med. 1996;37(11):1876–82.

    CAS  PubMed  Google Scholar 

  16. O’Reilly PH. Standardization of the renogram technique for investigating the dilated upper urinary tract and assessing the results of surgery. BJU Int. 2003;91(3):239–43.

    Article  CAS  Google Scholar 

  17. Taylor AT, Blaufox MD, De Palma D, et al. Guidance document for structured reporting of diuresis renography. Semin Nucl Med. 2012;42(1):41–8.

    Article  Google Scholar 

  18. Gates G. Computation of glomerular filtration rate with Tc-99m DTPA: an in-house computer program. J Nucl Med. 1984;25:613–8.

    CAS  PubMed  Google Scholar 

  19. el Maghraby TA, van Eck-Smit BL, de Fijter JW, Pauwels EK. Quantitative scintigraphic parameters for the assessment of renal transplant patients. Eur J Radiol. 1998;28(3):256–69.

    Article  Google Scholar 

  20. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.

    Article  Google Scholar 

  21. Schrier RW, Shchekochikhin D. Assessment of renal function in heart failure. J Am Coll Cardiol. 2012;59(19):1716–8.

    Article  Google Scholar 

  22. Hillege HL, Girbes AR, de Kam PJ, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102(2):203–10.

    Article  CAS  Google Scholar 

  23. Hillege HL, Nitsch D, Pfeffer MA, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006;113(5):671–8.

    Article  Google Scholar 

  24. Smith GL, Lichtman JH, Bracken MB, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47(10):1987–96.

    Article  Google Scholar 

  25. Carmines PKIE, Gensure RC. Arterial pressure effects on pre- glomerular microvasculature of juxtamedullary nephrons. Am J Physiol Heart Circ Physiol. 1990;258:F94–102.

    Article  CAS  Google Scholar 

  26. Thomson SC, Blantz RC. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J Am Soc Nephrol. 2008;19(12):2272–5.

    Article  Google Scholar 

  27. Smilde TDJ, Damman K, van der Harst P, et al. Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol. 2008;98(2):121–9.

    Article  Google Scholar 

  28. Testani JM, Cappola TP, Shen J, Shannon RP, Kimmel SE. Impact of changes in blood pressure during the treatment of acute decompensated heart failure on renal and clinical outcomes: an application of the escape trial limited dataset. J Am Coll Cardiol. 2011;57(14):E305.

    Article  Google Scholar 

  29. Lipcsey M, Bellomo R. Septic acute kidney injury: hemodynamic syndrome, inflammatory disorder, or both? Crit Care. 2011;15(6):1008.

    Article  Google Scholar 

  30. Pallone TLSE, Turner MR. Intrarenal blood flow_ microvascular anatomy and the regulation of medullary perfusion. Clin Exp Pharmacol Physiol. 1998;25(6):383–92.

    Article  CAS  Google Scholar 

  31. Nissen OI. The filtration fractions of plasma supplying the superficial and deep venous drainage area of the gat kidney. Acta Physiol Scand. 1966;68(3–4):275–85.

    Article  Google Scholar 

  32. Dupont M, Mullens W, Finucan M, Taylor DO, Starling RC, Tang WH. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur J Heart Fail. 2013;15(4):433–40.

    Article  CAS  Google Scholar 

  33. Metra M, Ponikowski P, Cotter G, et al. Effects of serelaxin in subgroups of patients with acute heart failure: results from RELAX-AHF. Eur Heart J. 2013;34(40):3128–36.

    Article  CAS  Google Scholar 

  34. Voors AA, Dahlke M, Meyer S, et al. Renal hemodynamic effects of serelaxin in patients with chronic heart failure: a randomized, placebo-controlled study. Circ Heart Fail. 2014;7(6):994–1002.

    Article  CAS  Google Scholar 

  35. Preston DFLR. Radionuclide evaluation of renal transplants. J Nucl Med. 1979;20:1094–6.

    Google Scholar 

  36. Hamilton D, Miola UJ, Payne MC. The renal transplant perfusion index: reduction in the error and variability. Eur J Nucl Med. 1994;21(3):232–8.

    Article  CAS  Google Scholar 

  37. El-Maghraby TAF, de Fijter JW, van Eck-Smit BLF, Zwinderman AH, El-Haddad SI, Pauwels EKJ. Renographic indices for evaluation of changes in graft function. Eur J Nucl Med. 1998;25:1575–86.

    Article  CAS  Google Scholar 

  38. Dubovsky EV, Russell CD, Yester MV, Thorstad BL, Ryan JP. Will 99mTc-MAG3 replace 131I-OIH and 99mTc-DTPA in the follow-up of renal transplants? Contrib Nephrol. 1990;79:118–22.

    Article  CAS  Google Scholar 

  39. Erbas B, Tuncel M. Renal function assessment during peptide receptor radionuclide therapy. Semin Nucl Med. 2016;46(5):462–78.

    Article  Google Scholar 

  40. Schneider AG, Goodwin MD, Bellomo R. Measurement of kidney perfusion in critically ill patients. Crit Care. 2013;17(2):220.

    Article  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No. 81670357) and Human Resources and Social Security of Hebei Province (Scientific Initiating Program: CY201615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2567 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Gao, X., Yin, P. et al. Semi-quantification of renal perfusion using 99mTc-DTPA in systolic heart failure: a feasibility study. Ann Nucl Med 35, 187–194 (2021). https://doi.org/10.1007/s12149-020-01556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-020-01556-6

Keywords

Navigation