Skip to main content

Advertisement

Log in

Negative remnant 99mTc-pertechnetate uptake predicts excellent response to radioactive iodine therapy in low- to intermediate-risk differentiated thyroid cancer patients who have undergone total thyroidectomy

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Negative 99mTc-pertechnetate uptake of the thyroid bed indicates the absence or a small volume of remnant thyroid tissue (RTT) after total thyroidectomy (TT). The aim of this study is to evaluate the predictive value of negative 99mTc-pertechnetate scintigraphy for excellent response (ER) to radioactive iodine therapy (RIT) in low- to intermediate-risk differentiated thyroid cancer (DTC) patients.

Patients

One-hundred and eighty-nine low- to intermediate-risk DTC patients who underwent TT, RIT with a single dose of 30 mCi and suppressive therapy with thyroid-stimulating hormone (TSH) from July 2015 to February 2016 in our hospital were retrospectively evaluated. 99mTc-pertechnetate thyroid scintigraphy was performed just before RIT and images were reported dichotomously as negative or positive. The response of patients was assessed for 23.2 ± 3.8 months after RIT and dichotomized as excellent response (ER) or non-excellent response (NER). 99mTc-pertechnetate uptake, age at diagnosis, gender, multifocality, T stage, N stage, preablative stimulated thyroglobulin (ps-Tg), and TSH were explored as potential predictors for ER.

Results

80.68% (71/88) of patients with negative 99mTc-pertechnetate uptake achieved ER. When patients were evaluated according to different ps-Tg levels, we found that 94.83% (55/58) of patients with ps-Tg < 1 ng/ml and negative 99mTc-pertechnetate uptake achieved ER. Multivariate Cox regression analysis revealed that ps-Tg (P = 0.0001) and 99mTc-pertechnetate uptake (P = 0.0473) were independent predictors for ER.

Conclusions

In addition to ps-Tg, negative 99mTc-pertechnetate uptake is also a significant independent predictor for an excellent response in low- to intermediate-risk patients. It may be possible to omit RIT in patients with ps-Tg < 1 ng/ml and concurrent negative 99mTc-pertechnetate uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ruel E, Thomas S, Dinan M, Perkins JM, Roman SA, Sosa JA. Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metabol. 2015;100(4):1529–36.

    Article  CAS  Google Scholar 

  3. Zidan J, Hefer E, Iosilevski G, et al. Efficacy of I131 ablation therapy using different doses as determined by postoperative thyroid scan uptake in patients with differentiated thyroid cancer. Int J Radiat Oncol Biol Phys. 2004;59(5):1330–6.

    Article  CAS  PubMed  Google Scholar 

  4. Holsinger FC, Ramaswamy U, Cabanillas ME, et al. Measuring the extent of total thyroidectomy for differentiated thyroid carcinoma using radioactive iodine imaging: relationship with serum thyroglobulin and clinical outcomes. JAMA. 2014;140(5):410–5.

    Google Scholar 

  5. Zeuren R, Biagini A, Grewal RK, et al. RAI thyroid bed uptake after total thyroidectomy: A novel SPECT-CT anatomic classification system. Laryngoscope. 2015;125(10):2417–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song JSA, Moolman N, Burrell S, et al. Use of radioiodine-131 scan to measure influence of surgical discipline, practice, and volume on residual thyroid tissue after total thyroidectomy for differentiated thyroid carcinoma. Head Neck. 2018.

  7. Li H, Zhang YQ, Wang C, Zhang X, Li X, Lin YS. Delayed initial radioiodine therapy related to incomplete response in low- to intermediate-risk differentiated thyroid cancer. Clin Endocrinol. 2018;88(4):601–6.

    Article  CAS  Google Scholar 

  8. Matrone A, Gambale C, Piaggi P, et al. Postoperative Thyroglobulin and Neck Ultrasound in the Risk Restratification and Decision to Perform 131I Ablation. J Clin Endocrinol Metabolism. 2017;102(3):893–902.

    Google Scholar 

  9. Ozdemir D, Cuhaci FN, Ozdemir E, et al. The role of postoperative Tc-99m pertechnetate scintigraphy in estimation of remnant mass and prediction of successful ablation in patients with differentiated thyroid cancer. Nucl Med Commun. 2016;37(6):640–5.

    Article  PubMed  Google Scholar 

  10. McDougall IR, Iagaru A. Thyroid stunning: fact or fiction? Seminar Nucl Med. 2011;41(2):105–12.

    Article  Google Scholar 

  11. Donahue KP, Shah NP, Lee SL, Oates ME. Initial staging of differentiated thyroid carcinoma: continued utility of posttherapy 131I whole-body scintigraphy. Radiology. 2008;246(3):887–94.

    Article  PubMed  Google Scholar 

  12. Aydin F, Sipahi M, Budak ES, et al. Role of Tc-99m pertechnetate for remnant scintigraphy, post-thyroidectomy, and serum thyroglobulin and antithyroglobulin antibody levels in the patients with differentiated thyroid cancer. Ann Nucl Med. 2016;30(1):60–7.

    Article  CAS  PubMed  Google Scholar 

  13. Giovanella L, Suriano S, Ricci R, Ceriani L, Anton Verburg F. Postsurgical thyroid remnant estimation by ((9)(9)m) Tc-pertechnetate scintigraphy predicts radioiodine ablation effectiveness in patients with differentiated thyroid carcinoma. Head Neck. 2011;33(4):552–6.

    Article  PubMed  Google Scholar 

  14. Jung JS, Lee SM, Kim SJ, Choi J, Han SW. Prediction of the success of thyroid remnant ablation using preablative 99mTc pertechnetate scintigraphy and postablative dual 131I scintigraphy. Nucl Med Commun. 2015;36(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  15. Tsai CJ, Cheng CY, Shen DH, et al. Tc-99m imaging in thyroidectomized differentiated thyroid cancer patients immediately before I-131 treatment. Nucl Med Commun. 2016;37(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  16. Webb RC, Howard RS, Stojadinovic A, et al. The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a meta-analysis involving 3947 patients. J Clin Endocrinol Metabolism. 2012;97(8):2754–63.

    Article  CAS  Google Scholar 

  17. Yang X, Liang J, Li T, Zhao T, Lin Y. Preablative stimulated thyroglobulin correlates to new therapy response system in differentiated thyroid cancer. J Clin Endocrinol Metabolism. 2016;101(3):1307–13.

    Article  CAS  Google Scholar 

  18. Tuttle RM, Leboeuf R. Follow up approaches in thyroid cancer: a risk adapted paradigm. Endocrinol Metabolism Clin North Am. 2008;37(2):419–35.

    Article  Google Scholar 

  19. Liu N, Meng Z, Jia Q, et al. Multiple-factor analysis of the first radioactive iodine therapy in post-operative patients with differentiated thyroid cancer for achieving a disease-free status. Sci Rep. 2016;6:34915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito S, Iwano S, Kato K, Naganawa S. Predictive factors for the outcomes of initial I-131 low-dose ablation therapy to Japanese patients with differentiated thyroid cancer. Ann Nucl Med 2018.

  21. Silva-Vieira M, Carrilho Vaz S, Esteves S, et al. Second primary cancer in patients with differentiated thyroid cancer: does radioiodine play a role? Thyroid. 2017;27(8):1068–76.

    Article  CAS  PubMed  Google Scholar 

  22. Park EK, Chung JK, Lim IH, et al. Recurrent/metastatic thyroid carcinomas false negative for serum thyroglobulin but positive by posttherapy I-131 whole body scans. Eur J Nucl Med Mol Imaging. 2009;36(2):172–9.

    Article  CAS  PubMed  Google Scholar 

  23. Phan HT, Jager PL, van der Wal JE, et al. The follow-up of patients with differentiated thyroid cancer and undetectable thyroglobulin (Tg) and Tg antibodies during ablation. Eur J Endocrinol. 2008;158(1):77–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Young Researcher Fund of Science and the Technology Department of Jilin Province (Grant number: 20170520027JH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ma Qingjie or Ji Bin.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, W., Gege, Z., Ningning, L. et al. Negative remnant 99mTc-pertechnetate uptake predicts excellent response to radioactive iodine therapy in low- to intermediate-risk differentiated thyroid cancer patients who have undergone total thyroidectomy. Ann Nucl Med 33, 112–118 (2019). https://doi.org/10.1007/s12149-018-1314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-018-1314-4

Keywords

Navigation