Skip to main content
Log in

Predictive value of SUV-based parameters derived from pre-treatment 18F-FLT PET/CT for short-term outcome with head and neck cancers

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to investigate the predictive potential of pre-treatment 3′-deoxy-3′-[18F]-fluorothymidine (FLT) uptake parameters for short-term outcome of primary head and neck squamous cell cancer (HNSCC) patients.

Patients and methods

A total of 32 patients undergoing pre-treatment FLT positron emission tomography/computed tomography (PET/CT) from May 2010 to May 2013 were evaluated. Semi-quantitative assessment was used to determine mean, peak and maximum standardized uptake values (SUVmean, SUVpeak and SUVmax), metabolic tumor volume (MTV) and total lesion proliferation (TLP). Clinicopathologic factors and PET/CT parameters were analyzed for their association with 2-year loco-regional control (LRC) and overall survival (OS).

Results

The mean (± SD) SUVmean, SUVpeak, SUVmax, MTV and TLP were 5.97 ± 3.16, 6.71 ± 3.75, 10.05 ± 5.37, 7.31 ± 8.05 and 44.95 ± 52.82, respectively. In univariate analyses, N category was associated with OS (P = 0.037). Increased MTV ≥13 ml was associated with decreased LRC and OS (P < 0.0001). TLP ≥69.3 g was also linked with both LRC and OS (P = 0.009 and 0.015, respectively). Regarding SUVs, only the SUVpeak was associated with LRC and OS (P = 0.035 and 0.049, respectively).

Conclusions

Pre-treatment MTV is the most useful parameter with FLT PET/CT. TLP and SUVpeak may also provide important prognostic information for patients with HNSCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong RJ, Lin DT, Schöder H, Patel SG, Gonen M, Wolden S, et al. Diagnostic and prognostic value of [18F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol. 2002;20:4199–208.

    Article  CAS  PubMed  Google Scholar 

  2. Ryan WR, Fee WE Jr, Le QT, Pinto HA. Positron-emission tomography for surveillance of head and neck cancer. Laryngoscope. 2005;115:645–50.

    Article  PubMed  Google Scholar 

  3. Minn H, Lapela M, Klemi PJ, Grénman R, Leskinen S, Lindholm P, et al. Prediction of survival with fluorine-18-fluorodeoxyglucose and PET in head and neck cancer. J Nucl Med. 1997;38:1907–11.

    CAS  PubMed  Google Scholar 

  4. Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, el El-Ghazi A, Lehmann W, et al. Standardized uptake value of 2-[18F] gluoro-2-deoxy-d-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol. 2002;20:1398–404.

    Article  CAS  PubMed  Google Scholar 

  5. Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M. FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer. 2002;86:512–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schinagl DA, Span PN, Oyen WJ, Kaanders JH. Can FDG PET predict radiation treatment outcome in head and neck cancer? results of a prospective study. Eur J Nucl Med Mol Imaging. 2011;38:1449–58.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Machtay M, Natwa M, Andrel J, Hyslop T, Anne PR, Lavarino J, et al. Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck. 2009;31:195–201.

    Article  PubMed  Google Scholar 

  8. Thorwarth D, Eschmann S, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol. 2006;80:151–6.

    Article  CAS  PubMed  Google Scholar 

  9. Roedl JB, Colen RR, Holalkere NS, Fischman AJ, Choi NC, Blake MA. Adenocarcinomas of the esophagus: response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT. comparison to histopathologic and clinical response evaluation. Radiother Oncol. 2008;89:278–86.

    Article  CAS  PubMed  Google Scholar 

  10. Gulec SA, Suthar RR, Barot TC, Pennington K. The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing 90Y selective internal radiation therapy plus chemotherapy. Eur J Nucl Med Mol Imaging. 2011;38:1289–95.

    Article  CAS  PubMed  Google Scholar 

  11. Chu KP, Murphy JD, La TH, Krakow TE, Iagaru A, Graves EE, et al. Prognostic value of metabolic tumor volume and velocity in predicting head-and-neck cancer outcomes. Int J Radiat Oncol Biol Phys. 2012;83:1521–7.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.

    Article  CAS  PubMed  Google Scholar 

  13. Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M, et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut. 2003;52:1602–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med. 2005;46:400–4.

    PubMed  Google Scholar 

  15. Yamamoto Y, Nishiyama Y, Ishikawa S, Nakano J, Chang SS, Bandoh S, et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34:1610–6.

    Article  CAS  PubMed  Google Scholar 

  16. Herrmann K, Wieder HA, Buck AK, Schöffel M, Krause BJ, Fend F, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-hodgkin’s lymphoma. Clin Cancer Res. 2007;13:3552–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:1339–47.

    Article  PubMed  Google Scholar 

  18. Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol. 2006;8:36–42.

    Article  PubMed  Google Scholar 

  19. Hatt M, Rest CC, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3′-deoxy-3′- 18F-fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76.

    Article  CAS  PubMed  Google Scholar 

  20. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.

    CAS  PubMed  Google Scholar 

  21. Mileshkin L, Hicks RJ, Hughes BG, Mitchell PL, Charu V, Gitlitz BJ, et al. Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res. 2011;17:3304–15.

    Article  CAS  PubMed  Google Scholar 

  22. Menda Y, Boles Ponto LL, Dornfeld KJ, Tewson TJ, Watkins GL, Schultz MK, et al. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med. 2009;50:1028–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med. 2010;51:866–74.

    Article  PubMed  Google Scholar 

  24. Kishino T, Hoshikawa H, Nishiyama Y, Mori N. Usefulness of 3′-deoxy-3′- 18F-fluorothymidine PET for predicting early response to chemoradiotherapy in head and neck cancer. J Nucl Med. 2012;53:1521–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lim R, Eaton A, Lee NY, Setton J, Ohri N, Rao S, et al. 18F-FDG PET/CT metabolic tumor volume and total lesion glycolysis predict outcome in oropharyngeal squamous cell carcinoma. J Nucl Med. 2012;53:1506–13.

    Article  CAS  PubMed  Google Scholar 

  26. Park GC, Kim JS, Roh JL, Choi SH, Nam SY, Kim SY. Prognostic value of metabolic tumor volume measured by 18F-FDG PET/CT in advanced-stage squamous cell carcinoma of the larynx and hypopharynx. Ann Oncol. 2013;24:208–14.

    Article  CAS  PubMed  Google Scholar 

  27. Hoeben BA, Troost EG, Span PN, van Herpen CM, Bussink J, Oyen WJ, et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med. 2013;54:532–40.

    Article  CAS  PubMed  Google Scholar 

  28. Kahraman D, Holstein A, Scheffler M, Zander T, Nogova L, Lammertsma AA, et al. Tumor lesion glycolysis and tumor lesion proliferation for response prediction and prognostic differentiation in patients with advanced non-small cell lung cancer treated with erlotinib. Clin Nucl Med. 2012;37:1058–64.

    Article  PubMed  Google Scholar 

  29. Hoshikawa H, Nishiyama Y, Kishino T, Yamamoto Y, Haba R, Mori N. Comparison of 18F-FLT PET and 18F FDG PET for visualization of head and neck squamous cell cancers. Mol Imaging Biol. 2011;13:172–7.

    Article  PubMed  Google Scholar 

  30. Yue JB, Yang J, Liu J, Lee J, Cabrera AR, Sun XD, et al. Histopathologic validation of 3′-deoxy-3′-18F-fluorothymidine PET for detecting tumor repopulation during fractionated radiotherapy of human FaDu squamous cell carcinoma in nude mice18F-FLT PET repopulation. Radiother Oncol. 2014;. doi:10.1016/j.radonc.2014.04.002.

    Google Scholar 

  31. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–50S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. the visual response score and the change in total lesion glycolysis. Clinical Positron Imaging (Netherlands). 1999;2:159–71.

    Article  Google Scholar 

  33. Lee JA. Segmentation of positron emission tomography images:some recommendations for target delineation in radiation oncology. Radiother Oncol. 2010;96:302–7.

    Article  PubMed  Google Scholar 

  34. La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;74:1335–41.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in (18)F-FDG PET. J Nucl Med. 2010;51:268–76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Maeda, the technologist of the Department of Radiology for his expert assistance.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hoshikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshikawa, H., Yamamoto, Y., Mori, T. et al. Predictive value of SUV-based parameters derived from pre-treatment 18F-FLT PET/CT for short-term outcome with head and neck cancers. Ann Nucl Med 28, 1020–1026 (2014). https://doi.org/10.1007/s12149-014-0902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-014-0902-1

Keywords

Navigation