Skip to main content
Log in

Radius dependence of FP-CIT quantification: a Monte Carlo-based simulation study

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Dopamine transporter imaging with SPECT is a valuable tool for both clinical routine and research studies. Semi-quantitative analysis plays a key role in interpreting the scans, but is dependent on numerous factors, rotational radius being one of them. This study systematically evaluates the potential influence of radius of rotation on apparent tracer binding and describes methods for correction.

Methods

Monte Carlo simulation scans of a digital brain phantom with various disease states and various radii of rotation ranging from 13 to 30 cm were analyzed using 4 different methods of semi-quantification. Different volumes of interest as well as a method with partial volume correction were applied.

Results

For conventional 3D semi-quantification methods the decrease of measured striatal binding per cm additional radius rotation lied in the range between 2.5 and 3.1 %, whereas effects were negligible when applying recovery-corrected quantification. Effects were independent of disease state.

Conclusion

Partial volume effects with increasing radius of rotation can lead to considerable decrease of measured binding ratios, particularly when applying dopamine transporter imaging in a research setting. Standardization of acquisition radius can avoid the effect; correction seems feasible, but the correction factors depend on the quantification approach applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAT:

Dopamine transporter

FP-CIT:

I-123-N-ω-Fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane

FWHM:

Full width at half maximum

OSEM:

Ordered subset expectation maximization

ROI:

Region of interest

SPECT:

Single photon emission computed tomography

VOI:

Volume of interest

References

  1. Booij J, Speelman JD, Horstink MW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med. 2001;28:266–72.

    Article  CAS  PubMed  Google Scholar 

  2. Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of Parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.

    Article  CAS  PubMed  Google Scholar 

  3. Darcourt J, Booij J, Tatsch K, Varrone A, Vander Borght T, Kapucu OL, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2010;37:443–50.

    Article  CAS  PubMed  Google Scholar 

  4. Chouker M, Tatsch K, Linke R, Pogarell O, Hahn K, Schwarz J. Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl Med Commun. 2001;22:721–5.

    Article  CAS  PubMed  Google Scholar 

  5. Pirker W, Djamshidian S, Asenbaum S, Gerschlager W, Tribl G, Hoffmann M, et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical Parkinsonism: a longitudinal beta-CIT SPECT study. Mov Disord. 2002;17:45–53.

    Article  PubMed  Google Scholar 

  6. Varrone A, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Booij J, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2013;40:213–27.

    Article  CAS  PubMed  Google Scholar 

  7. Larsson A, Mo SJ, Riklund K. Rotation radius dependence of 123I-FP-CIT and 123I-IBZM SPECT uptake ratios: a Monte Carlo study. J Nucl Med Technol. 2012;40:249–54.

    Article  PubMed  Google Scholar 

  8. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB. Computerized 3-dimensional segmented human anatomy. Med Phys. 1994;21:299–302.

    Article  CAS  PubMed  Google Scholar 

  9. Koch W, Radau PE, Munzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging. 2006;33:495–502.

    Article  PubMed  Google Scholar 

  10. Koch W, Hornung J, Hamann C, Popperl G, Tatsch K. Equipment-independent reference values for dopamine transporter imaging with 123I-FP-CIT. Nuklearmedizin. 2007;46:107–11.

    CAS  PubMed  Google Scholar 

  11. Schwarz J, Storch A, Koch W, Pogarell O, Radau PE, Tatsch K. Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med. 2004;45:1694–7.

    CAS  PubMed  Google Scholar 

  12. Ljungberg M. The SIMIND Monte Carlo program. In: Ljungberg M, Strand S-E, King MA, editors. Monte Carlo calculation in nuclear medicine: applications in diagnostic imaging. Bristol and Philadelphia: IOP Publishing; 1998. p. 145–63.

    Google Scholar 

  13. Ljungberg M, Larsson A, Johansson L. A new collimator simulation in SIMIND based on the delta-scattering technique. IEEE Trans Nucl Sci. 2005;52:1370–5.

    Article  Google Scholar 

  14. Bahreyni Toossi MT, Islamian JP, Momennezhad M, Ljungberg M, Naseri SH. SIMIND Monte Carlo simulation of a single photon emission CT. J Med Phys. 2010;35:42–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lagerburg V, de Nijs R, Holm S, Svarer C. A comparison of different energy window subtraction methods to correct for scatter and downscatter in I-123 SPECT imaging. Nucl Med Commun. 2012;33:708–18.

    Article  PubMed  Google Scholar 

  16. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position dependent Compton scatter correction in single photon emission CT. IEEE Trans Nucl Med. 1991;10:408–12.

    Article  CAS  Google Scholar 

  17. Hudson H, Larkin R. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:594–600.

    Article  Google Scholar 

  18. Tossici-Bolt L, Dickson JC, Sera T, de Nijs R, Bagnara MC, Jonsson C, et al. Calibration of gamma camera systems for a multicentre European (1)(2)(3)I-FP-CIT SPECT normal database. Eur J Nucl Med Mol Imaging. 2011;38:1529–40.

    Article  PubMed  Google Scholar 

  19. Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol. 2004;49:N227–34.

    Article  CAS  PubMed  Google Scholar 

  20. Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [(123)I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33:1491–9.

    Article  PubMed  Google Scholar 

  21. Oertel WH, Gerstner A, Hoffken H, Dodel RC, Eggert KM, Moller JC. Role of dopamine transporter SPECT for the practitioner and the general neurologist. Mov Disord. 2003;18(suppl 7):S9–15.

    Article  PubMed  Google Scholar 

  22. Poewe W, Scherfler C. Role of dopamine transporter imaging in investigation of parkinsonian syndromes in routine clinical practice. Mov Disord. 2003;18(suppl 7):S16–21.

    Article  PubMed  Google Scholar 

  23. Marshall V, Grosset DG. Role of dopamine transporter imaging in the diagnosis of atypical tremor disorders. Mov Disord. 2003;18(suppl 7):S22–7.

    Article  PubMed  Google Scholar 

  24. Staffen W, Mair A, Unterrainer J, Trinka E, Ladurner G. Measuring the progression of idiopathic Parkinson’s disease with [123I] beta-CIT SPECT. J Neural Transm. 2000;107:543–52.

    Article  CAS  PubMed  Google Scholar 

  25. Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA. 2002;287:1653–61.

    Article  Google Scholar 

  26. Pirker W, Holler I, Gerschlager W, Asenbaum S, Zettinig G, Brucke T. Measuring the rate of progression of Parkinson’s disease over a 5-year period with beta-CIT SPECT. Mov Disord. 2003;18:1266–72.

    Article  PubMed  Google Scholar 

  27. Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using (123)I-labelled dopamine D(2) transporter ligands. Eur J Nucl Med Mol Imaging. 2002;29:BP30–5.

    Article  CAS  PubMed  Google Scholar 

  28. Linke R, Gostomzyk J, Hahn K, Tatsch K. [123I]IPT binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med. 2000;27:1809–12.

    Article  CAS  PubMed  Google Scholar 

  29. Verhoeff NP, Kapucu O, Sokole-Busemann E, van Royen EA, Janssen AG. Estimation of dopamine D2 receptor binding potential in the striatum with iodine-123-IBZM SPECT: technical and interobserver variability. J Nucl Med. 1993;34:2076–84.

    CAS  PubMed  Google Scholar 

  30. Tissingh G, Booij J, Bergmans P, Winogrodzka A, Janssen AG, van Royen EA, et al. Iodine-123-N-omega-fluoropropyl-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med. 1998;39:1143–8.

    CAS  PubMed  Google Scholar 

  31. Booij J, Habraken JB, Bergmans P, Tissingh G, Winogrodzka A, Wolters EC, et al. Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med. 1998;39:1879–84.

    CAS  PubMed  Google Scholar 

  32. Hwang WJ, Yao WJ, Wey SP, Ting G. Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson’s disease. J Nucl Med. 2004;45:207–13.

    CAS  PubMed  Google Scholar 

  33. Seibyl JP, Laruelle M, van Dyck CH, Wallace E, Baldwin RM, Zoghbi S, et al. Reproducibility of iodine-123-beta-CIT SPECT brain measurement of dopamine transporters. J Nucl Med. 1996;37:222–8.

    CAS  PubMed  Google Scholar 

  34. Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, et al. Test/retest reproducibility of iodine-123-betaCIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med. 1997;38:1453–9.

    CAS  PubMed  Google Scholar 

  35. Tsuchida T, Ballinger JR, Vines D, Kim YJ, Utsunomiya K, Lang AE, et al. Reproducibility of dopamine transporter density measured with 123I-FPCIT SPECT in normal control and Parkinson’s disease patients. Ann Nucl Med. 2004;18:609–16.

    Article  PubMed  Google Scholar 

  36. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27:161–9.

    Article  CAS  PubMed  Google Scholar 

  37. Seibyl JP, Marek K, Sheff K, Zoghbi S, Baldwin RM, Charney DS, et al. Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson’s patients. J Nucl Med. 1998;39:1500–8.

    CAS  PubMed  Google Scholar 

  38. Koch W, Mustafa M, Zach C, Tatsch K. Influence of movement on FP-CIT SPECT quantification: a Monte Carlo based simulation. Nucl Med Commun. 2007;28:603–14.

    Article  PubMed  Google Scholar 

  39. Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med. 2005;46:1109–18.

    PubMed  Google Scholar 

  40. Koch W, Hamann C, Welsch J, Popperl G, Radau PE, Tatsch K. Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies? J Nucl Med. 2005;46:1804–11.

    PubMed  Google Scholar 

  41. Gantet P, Payoux P, Celler A, Majorel C, Gourion D, Noll D, et al. Iterative three-dimensional expectation maximization restoration of single photon emission computed tomography images: application in striatal imaging. Med Phys. 2006;33:52–60.

    Article  PubMed  Google Scholar 

  42. Winz OH, Hellwig S, Mix M, Weber WA, Mottaghy FM, Schafer WM, et al. Image quality and data quantification in dopamine transporter SPECT: advantage of 3-dimensional OSEM reconstruction? Clin Nucl Med. 2012;37:866–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. rer. nat. Dipl.-Inf. Hanno Schumacher (MiE Germany) for providing insights in the MiE implementation of OSEM reconstruction and filtering as well as providing information on how to transfer the Monte Carlo simulation data to the gamma camera system. Thanks also go to Michael Ljungberg for providing the SIMIND Monte Carlo program.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, W., Bartenstein, P. & la Fougère, C. Radius dependence of FP-CIT quantification: a Monte Carlo-based simulation study. Ann Nucl Med 28, 103–111 (2014). https://doi.org/10.1007/s12149-013-0789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0789-2

Keywords

Navigation