Skip to main content

Advertisement

Log in

Continuous intravenous infusion of prostaglandin E1 improves myocardial perfusion reserve in patients with ischemic heart disease assessed by positron emission tomography: a pilot study

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Recent investigation has demonstrated that prostaglandin E1 (PGE1) therapy increased capillary density in explanted hearts. Dynamic 13N-ammonia positron emission tomography (PET) is reliable for non-invasive measurement of myocardial blood flow and myocardial perfusion reserve (MPR). The aim of this study was to investigate the effects of PGE1 therapy during 4 weeks on reduction of myocardial perfusion abnormalities and increase of MPR in the patients with ischemic heart disease.

Methods

In this double-blind, placebo-controlled trial, we randomly assigned 11 patients who had symptomatic heart failure and documented myocardial ischemia to 4 weeks intravenous infusion of PGE1 (2.5 ng/kg/min; 8 patients, age 60 ± 13 years) or saline (3 patients, age 57 ± 13 years). Dynamic 13N-ammonia PET scans at rest and during adenosine stress were obtained at baseline and 12 weeks after treatment completion. Quantitative size/severity of perfusion defects and MPR change from baseline to follow-up PET were determined using a 17-segment model.

Results

Compared with the control group, baseline MPR in the PGE1 group was significantly lower (1.96 ± 0.78 vs. 2.71 ± 0.73; P < 0.001). MPR significantly improved 12 weeks after completion of PGE1 infusion (1.96 ± 0.78 to 2.16 ± 0.77; P < 0.001). In contrast, MPR declined significantly in the placebo group (2.71 ± 0.73 to 2.01 ± 0.58, P < 0.001).

Conclusion

Four weeks of PGE1 infusion sustained MPR improvement in patients with ischemic heart disease. This may be an attractive therapeutic approach for no-option patients with severe ischemic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med. 1996;334:296–302.

    Article  PubMed  CAS  Google Scholar 

  2. Diehm C, Balzer K, Bisler H, Bulling B, Camci M, Creutzig A, et al. Efficacy of a new prostaglandin E1 regimen in outpatients with severe intermittent claudication: results of a multicenter placebo-controlled double-blind trial. J Vasc Surg. 1997;25:537–44.

    Article  PubMed  CAS  Google Scholar 

  3. Stanek B, Sturm B, Frey B, Hülsmann M, Bojic A, Berger R, et al. Bridging to heart transplantation: prostaglandin E1 versus prostacyclin versus dobutamine. J Heart Lung Transplant. 1999;18:358–66.

    Article  PubMed  CAS  Google Scholar 

  4. Clapp LH, Finney P, Turcato S, Tran S, Rubin LJ, Tinker A. Differential effects of stable prostacyclin analogs on smooth muscle proliferation and cyclic AMP generation in human pulmonary artery. Am J Respir Cell Mol Biol. 2002;26:194–201.

    PubMed  CAS  Google Scholar 

  5. Loesberg C, van Wijk R, Zandbergen J, van Aken WG, van Mourik JA, de Groot PG. Cell cycle-dependent inhibition of human vascular smooth muscle cell proliferation by prostaglandin E1. Exp Cell Res. 1985;160:117–25.

    Article  PubMed  CAS  Google Scholar 

  6. Hülsmann M, Stanek B, Frey B, Berger R, Rödler S, Siegel A, et al. Hemodynamic and neurohormonal effects of long-term of prostaglandin E1 infusion in outpatients with severe congestive heart failure. J Heart Lung Transplant. 1997;16:556–62.

    PubMed  Google Scholar 

  7. Mehrabi MR, Serbecic N, Tamaddon F, Kaun C, Huber K, Pacher R, et al. Clinical and experimental evidence of prostaglandin E1-induced angiogenesis in the myocardium of patients with ischemic heart disease. Cardiovasc Res. 2002;56:214–24.

    Article  PubMed  CAS  Google Scholar 

  8. Mehrabi MR, Serbecic N, Tamaddon F, Huber K, Pacher R, Grimm M, et al. Revascularization of myocardial scar tissue following prostaglandin E1-therapy in patients with ischemic heart disease. Pathol Res Pract. 2003;199:129–36.

    Article  PubMed  CAS  Google Scholar 

  9. Czernin J, Schelbert HR. Non-invasive quantification of myocardial blood flow and flow reserve using dynamic positron emission tomography. Wien Klin Wochenschr. 1994;106:478–86.

    PubMed  CAS  Google Scholar 

  10. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen- 13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med. 1993;34:83–91.

    PubMed  CAS  Google Scholar 

  11. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshinaga K, Chow BJ, Dekemp RA, Thorn S, Ruddy TD, Davies RA, et al. Application of cardiac molecular imaging using positron emission tomography in evaluation of drug and therapeutics for cardiovascular disorders. Curr Pharm Des. 2005;11:903–32.

    Article  PubMed  CAS  Google Scholar 

  13. Wu YW, Yen RF, Chieng PU, Huang PJ. Tl-201 myocardial SPECT in differentiation of ischemic from nonischemic dilated cardiomyopathy in patients with left ventricular dysfunction. J Nucl Cardiol. 2003;10:369–74.

    Article  PubMed  Google Scholar 

  14. Jorg-Ciopor M, Namdar M, Turina J, Jenni R, Schwitter J, Turina M, et al. Regional myocardial ischemia in hypertrophic cardiomyopathy: impact of myectomy. J Thorac Cardiovasc Surg. 2004;128:163–9.

    Article  PubMed  Google Scholar 

  15. Wu YW, Chen YH, Wang SS, Jui HY, Yen RF, Tzen KY, et al. PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J Nucl Med. 2010;51:906–12.

    Article  PubMed  Google Scholar 

  16. Wu YW, Tadamura E, Kanao S, Yamamuro M, Marui A, Komeda M, et al. Myocardial viability by contrast-enhanced cardiovascular magnetic resonance in patients with coronary artery disease: comparison with gated single-photon emission tomography and FDG position emission tomography. Int J Cardiovasc Imaging. 2007;23:757–65.

    Article  PubMed  CAS  Google Scholar 

  17. DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallee JP, et al. Estimation of myocardial blood flow for longitudinal studies using 13N-ammonia and Positron emission tomography. J Nucl Cardiol. 1996;3:494–507.

    Article  PubMed  CAS  Google Scholar 

  18. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography: added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

  19. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;90:1076–87.

    Article  Google Scholar 

  20. Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.

    Article  PubMed  Google Scholar 

  21. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in human. Validation with positron emission tomography. Circulation. 1994;89:1013–22.

    PubMed  Google Scholar 

  22. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002;105:186–93.

    Article  PubMed  Google Scholar 

  23. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35.

    Article  PubMed  CAS  Google Scholar 

  24. Tio RA, Dabeshlim A, Siebelink H-MJ, Sutter J, Hillege HL, Zeebregts CJ, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med. 2009;50:214–9.

    Article  PubMed  Google Scholar 

  25. Gould KL, Martucci JP, Goldberg DI, Hess MJ, Edens RP, Latifi R, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. Circulation. 1994;89:1530–8.

    PubMed  CAS  Google Scholar 

  26. Sdringola S, Loghin C, Boccalandro F, Gould KL. Mechanism of progression and regression of coronary artery disease by PET related to treatment intensity and clinical events at long-term follow-up. J Nucl Med. 2006;47:59–67.

    PubMed  Google Scholar 

  27. Wielepp P, Baller D, Gleichmann U, Pulawski E, Horstlotte D, Burchert W. Beneficial effects of atorvastatin on myocardial regions with initially low vasodilatory capacity at various stage of coronary artery disease. Eur J Nucl Med Mole Imaging. 2005;32:1321–77.

    Google Scholar 

  28. Higuchi T, Abletshauser C, Nekolla SG, Schwaiger M, Bengel FM. Effect of the angiotensin receptor blocker Valsartan on coronary microvascular flow reserve in moderately hypertensive patients with stable coronary artery disease. Microcirculation. 2007;14:805–12.

    Article  PubMed  CAS  Google Scholar 

  29. Walsh MN, Geltman EM, Steele RL, Kenzora JL, Ludbrook PA, Sobel BE, et al. Augmented myocardial perfusion reserve after coronary angioplasty quantified by positron emission tomography with H 152 O. J Am Coll Cardiol. 1990;15:119–27.

    Article  PubMed  CAS  Google Scholar 

  30. Strong CG, Bohr DF. Effects of prostaglandins E1, E2, A1 and F1-alpha on isolated vascular smooth muscle. Am J Physiol. 1967;213:725–33.

    PubMed  CAS  Google Scholar 

  31. Makita S, Nakamura M, Ohhira A, Itoh S, Hiramori K. Effects of prostaglandin E1 infusion on limb hemodynamics and vasodilatory response in patients with arteriosclerosis obliterans. Cardiovasc Drugs Ther. 1997;11:441–8.

    Article  PubMed  CAS  Google Scholar 

  32. Murota H, Kotobuki Y, Umegaki N, Tani M, Katayama I. New aspect of anti-inflammatory action of lipo-prostaglandinE1 in the management of collagen disease-related skin ulcer. Rheumatol Int. 2008;28:1127–35.

    Article  PubMed  CAS  Google Scholar 

  33. Weiss TW, Mehrabi MR, Kaun C, Zorn G, Kastel SP, Speidi WS, et al. Prostaglandin E1 induces vascular endothelial growth factor-1 in human adult cardiac myocytes but not in human adult cardiac fibroblasts via a cAMP dependent mechanism. J Mol Cell Cardiol. 2004;36:539–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged the assistance provided by the National Taiwan University Hospital, Center for PET staff. The study was supported by Biopeutics Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Wen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CL., Wu, YW., Wang, SS. et al. Continuous intravenous infusion of prostaglandin E1 improves myocardial perfusion reserve in patients with ischemic heart disease assessed by positron emission tomography: a pilot study. Ann Nucl Med 25, 462–468 (2011). https://doi.org/10.1007/s12149-011-0487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-011-0487-x

Keywords

Navigation