Skip to main content
Log in

Omission of [15O]CO scan for PET CMRO2 examination using 15O-labelled compounds

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

CBF, OEF and CMRO2 provide us important clinical indices and are used for assessing ischemic degree in cerebrovascular disorders. These quantitative images can be measured by PET using 15O-labelled tracers such as C15O, C15O2 and 15O2. To reduce the time of scan, one possibility is to omit the use of CBV data. The present study investigated the influence of fixing the CBV to OEF and CMRO2 values on subjects with and without cerebrovascular disorders.

Methods

The study consisted of three groups, namely, GROUP-0 (n = 10), GROUP-1 (n = 9), and GROUP-2 (n = 10), corresponding to—without significant disorder, with elevated CBV, and with reduced CBF and elevated OEF, respectively. All subjects received PET examination and using the PET data OEF and CMRO2 images were computed by fixing CBV and with CBV data. The computed OEF and CMRO2 values were compared between the methods.

Results

The OEF and CMRO2 values obtained by fixing the CBV were around 10% underestimation against that with CBV data. The regression analysis showed that these values were comparable (r = 0.93–0.98, P < 0.001). The simulation showed that fixing of the CBV would not derive significant error in either OEF or CMRO2 values, when changed from 0 to 0.08 ml/g.

Conclusion

This study shows the feasibility of fixing the CBV value for computing OEF and CMRO2 values in the PET examination, suggesting the CO scan could be eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frackowiak RS, Jones T, Lenzi GL, Heather JD. Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography. Acta Neurol Scand. 1980;62:336–44.

    Article  PubMed  CAS  Google Scholar 

  2. Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.

    Article  PubMed  CAS  Google Scholar 

  3. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. 1984;25:177–87.

    PubMed  CAS  Google Scholar 

  4. Subramanyam R, Alpert NM, Hoop B Jr, Brownell GL, Yaveras JM. A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15O, and C15O2. J Nucl Med. 1978;19:48–53.

    PubMed  CAS  Google Scholar 

  5. Lammertsma AA, Heather JD, Jones T, Frackowiak RS, Lenzi GL. A statistical study of the steady state technique for measuring regional cerebral blood flow and oxygen utilization using 15O. J Comput Assist Tomogr. 1982;6:566–73.

    Article  PubMed  CAS  Google Scholar 

  6. Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metabol. 1983;3:416–24.

    Article  CAS  Google Scholar 

  7. Correia JA, Alpert NM, Buxton RB, Ackerman RH. Analysis of some errors in the measurement of oxygen extraction and oxygen consumption by the equilibrium inhalation method. J Cereb Blood Metab. 1985;5:591–9.

    Article  CAS  Google Scholar 

  8. Okazawa H, Yamauchi H, Sugimoto K, Takahashi M, Toyoda H, Kishibe Y, et al. Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: positron emission tomography study using 15O-gas and water. J Cereb Blood Metab. 2001;21:793–803.

    Article  CAS  Google Scholar 

  9. Okazawa H, Yamauchi H, Sugimoto K, Toyoda H, Kishibe Y, Takahashi M. Effects of acetazolamide on cerebral blood flow, blood volume, and oxygen metabolism: a positron emission tomography study with healthy volunteers. J Cereb Blood Flow Metab. 2001;21:1472–9.

    Article  PubMed  CAS  Google Scholar 

  10. Hatazawa J, Fujita H, Kanno I, Satoh T, Iida H, Miura S, et al. Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method. Ann Nucl Med. 1995;9:15–21.

    Article  PubMed  CAS  Google Scholar 

  11. Shidahara M, Watabe H, Kim KM, Oka H, Sago M, Hayashi T, et al. Evaluation of a commercial PET tomograph-based system for the quantitative assessment of rCBF, rOEF and rCMRO2 by using sequential administration of 15O-labeled compounds. Ann Nucl Med. 2002;16:317–27.

    Article  PubMed  Google Scholar 

  12. Kudomi N, Hayashi T, Teramoto N, Watabe H, Kawachi N, Ohta Y, et al. Rapid quantitative measurement of CMRO2 and CBF by dual administration of 15O-labeled oxygen and water during a single PET scan—a validation study and error analysis in anesthetized monkeys. J Cereb Blood Flow Metab. 2005;259:1209–24.

    Article  Google Scholar 

  13. Kudomi N, Watabe H, Hayashi T, Iida H. Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method. Phys Med Biol. 2007;52:1893–908.

    Article  PubMed  Google Scholar 

  14. Powers WJ, Press GA, Grubb RL Jr, Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med. 1987;106:27–34.

    PubMed  CAS  Google Scholar 

  15. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6:536–45.

    Article  PubMed  CAS  Google Scholar 

  16. Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, et al. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O] water and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1988;8:285–8.

    Article  PubMed  CAS  Google Scholar 

  17. Koeppe RA, Holden JE, Ip WR. Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab. 1985;5:224–34.

    Article  PubMed  CAS  Google Scholar 

  18. Huang SC, Barrio JR, Yu DC, Chen B, Grafton S, Melega WP, et al. Modelling approach for separating blood time-activity curves in positron emission tomographic studies. Phys Med Biol. 1991;36:749–61.

    Article  PubMed  CAS  Google Scholar 

  19. Iida H, Jones T, Miura S. Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J Nucl Med. 1993;34:1333–40.

    PubMed  CAS  Google Scholar 

  20. Kudomi N, Hayashi T, Watabe H, Teramoto N, Piao R, Ose T, et al. A physiologic model for recirculation water correction in CMRO2 assessment with 15O2 inhalation PET. J Cereb Blood Flow Metab. 2009;29:355–64.

    Article  PubMed  Google Scholar 

  21. Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging. 2004;31(5):635–43.

    Article  PubMed  Google Scholar 

  22. Hayashi T, Watabe H, Kudomi N, Kim KM, Enmi J, Hayashida K, et al. A theoretical model of oxygen delivery and metabolism for physiologic interpretation of quantitative cerebral blood flow and metabolic rate of oxygen. J Cereb Blood Flow Metab. 2003;23:1314–23.

    Article  PubMed  CAS  Google Scholar 

  23. Meyer E, Tyler JL, Thompson CJ, Redies C, Diksic M, Hakim AM. Estimation of cerebral oxygen utilization rate by single-bolus 15O2 inhalation and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1987;7:403–14.

    Article  PubMed  CAS  Google Scholar 

  24. Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab. 1992;12:175–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Sasakawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasakawa, Y., Kudomi, N., Yamamoto, Y. et al. Omission of [15O]CO scan for PET CMRO2 examination using 15O-labelled compounds. Ann Nucl Med 25, 189–196 (2011). https://doi.org/10.1007/s12149-010-0438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-010-0438-y

Keywords

Navigation