Skip to main content
Log in

A simple table lookup method for PET/CT partial volume correction using a point-spread function in diagnosing lymph node metastasis

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

We evaluated the partial volume effect in PET/CT images and developed a simple correction method to address this problem.

Methods

Six spheres and the background in the phantom were filled with F-18 and we thus obtained 4 different sphere-to-background (SB) ratios. Thirty-nine cervical lymph nodes in 7 patients with papillary thyroid carcinoma (15 malignant and 24 benign) were also examined as a preliminary clinical study. First, we developed recovery coefficient (RC) curves normalized to the maximum counts of the 37-mm sphere. Next, we developed a correction table to determine the true SB ratio using three parameters, including the maximum counts of both the sphere and background and the lesion diameter, by modifying the approximation formula of the RC curves including the point-spread function correction. The full width at half maximum in this formula is estimated with the function of the SB ratio.

Results

In the phantom study, a size-dependent underestimation of the radioactivity was observed. The degree of decline of RC was influenced by the SB ratio. In preliminary clinical examination, the difference in the SUVmax between malignant and benign LNs thus became more prominent after the correction. The PV correction slightly improved the diagnostic accuracy from 95 to 100%.

Conclusions

We developed a simple table lookup correction method for the partial volume effect of PET/CT. This new method is considered to be clinically useful for the diagnosis of cervical LN metastasis. Further examination with a greater number of subjects is required to corroborate its clinical usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poeppel TD, Krause BJ, Heusner TA, Boy C, Bockisch A, Antoch G. PET/CT for the staging and follow-up of patients with malignancies. Eur J Radiol. 2009;70(3):382–92.

    Article  CAS  PubMed  Google Scholar 

  2. Sasaki M, Ichiya Y, Kuwabara Y, Akashi Y, Yoshida T, Fukumura T, et al. The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med. 1996;23:741–7.

    Article  CAS  PubMed  Google Scholar 

  3. Gould MK, Kuschner WG, Rydzak CE, Maclean CC, Demas AN, Shigemitsu H, et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med. 2003;139(11):879–92.

    PubMed  Google Scholar 

  4. Kyzas PA, Evangelou E, Denaxa-Kyza D, Ioannidis JP. 18F-Fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst. 2008;100(10):712–20.

    Article  PubMed  Google Scholar 

  5. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.

    CAS  PubMed  Google Scholar 

  6. Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med. 2008;49:1097–106.

    Article  PubMed  Google Scholar 

  7. Chen CH, Muzic RF Jr, Nelson AD, Adler LP. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med. 1999;40:118–30.

    CAS  PubMed  Google Scholar 

  8. Adler LP, Crowe JP, Al-Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-d-glucose PET. Radiology. 1993;187:743–50.

    CAS  PubMed  Google Scholar 

  9. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hickeson M, Yun M, Matthies A, Zhuang H, Adam LE, Lacorte L, Alavi A. Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging. 2002;29(12):1639–47.

    Article  PubMed  Google Scholar 

  11. Srinivas SM, Dhurairaj T, Basu S, Bural G, Surti S, Alavi A. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med. 2009;23(4):341–8.

    Article  PubMed  Google Scholar 

  12. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.

    Article  CAS  PubMed  Google Scholar 

  13. Kessler RM, Ellis JR Jr, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.

    Article  CAS  PubMed  Google Scholar 

  14. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  15. Sigg MB, Steinert H, Grätz K, Hugenin P, Stoeckli S, Eyrich GK. Staging of head and neck tumors: [18F]fluorodeoxyglucose positron emission tomography compared with physical examination and conventional imaging modalities. J Oral Maxillofac Surg. 2003;61(9):1022–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the radiological technologists in the Division of Nuclear Medicine of Kyushu University Hospital and Mr. Hirofumi Kawakami for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaguchi, Y., Mizoguchi, N., Mitsumoto, T. et al. A simple table lookup method for PET/CT partial volume correction using a point-spread function in diagnosing lymph node metastasis. Ann Nucl Med 24, 585–591 (2010). https://doi.org/10.1007/s12149-010-0401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-010-0401-y

Keywords

Navigation