Skip to main content

Advertisement

Log in

Usefulness of rCBF analysis in diagnosing Parkinson’s disease: supplemental role with MIBG myocardial scintigraphy

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Abstract

123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy is a useful tool for differentiating idiopathic Parkinson’s disease (PD) from parkinsonism (PS) caused by other disorders. However, cardiac MIBG uptake is affected by various causes. Alternatively, hypoperfusion in the occipital lobe of PD is reported recently.

Objective

The objective is to clarify the correlation between regional cerebral blood flow (rCBF) alteration and cardiac MIBG uptake in PD. In addition, we examined whether additional brain perfusion analysis improved the differential diagnostic ability for PD from PS when compared with MIBG scintigraphy alone.

Methods

Forty-nine patients with PD (27 mild groups: Hoehn and Yahr stages I, II; 22 severe groups: Hoehn and Yahr stages III, IV) and 28 patients with PS participated. We compared absolute rCBF values between PD and PS. In addition, we determined correlation between MIBG parameters and each rCBF value. Finally, we compared the diagnostic ability for the differentiation of PD from PS between two diagnostic criteria, each MIBG index abnormality alone [heart-to-mediastinum ratio, H/M (E) < 1.9, H/E (D) < 1.7, washout rate > 40%] and each MIBG index abnormality or occipital lobe hypoperfusion (<36 ml/100 g per min).

Results

Absolute rCBF value of occipital lobe was significantly lower in severe PD as compared with PS or mild PD. In the correlation analysis, rCBF of occipital lobe correlated positively with MIBG parameters (H/M). Regarding the diagnostic ability, sensitivity improved by accounting for occipital hypoperfusion as compared with MIBG indices alone. In contrast, neither specificity nor accuracy improved by adding occipital lobe analysis.

Conclusions

MIBG parameters (H/M) correlated positively with occipital hypoperfusion in PD. In the differential diagnosis between PD and PS, although its usefulness might be limited, analysis of rCBF in the occipital lobe added to 123I-MIBG myocardial imaging can be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson’s disease. Ann Neurol 1992;32:S125–S127.

    Article  PubMed  Google Scholar 

  2. Nagayama H, Hamamoto M, Nito C, Takagi S, Miyazaki T, Katayama Y. Initial symptoms of Parkinson’s disease with elderly onset. Gerontology 2000;46:129–132.

    Article  PubMed  CAS  Google Scholar 

  3. Gross M, Bannister R, Godwin-Austen R. Orthostatic hypotension in Parkinson’s disease. Lancet 1972;1:174–176.

    Article  PubMed  CAS  Google Scholar 

  4. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu JL, Clinthorne NH, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 1981;22:22–31.

    PubMed  CAS  Google Scholar 

  5. Yoshita M, Hayashi M, Hirai S. Decreased myocardial accumulation of 123I-meta-iodobenzyl guanidine in Parkinson’s disease. Nucl Med Commun 1998;19:137–142.

    Article  PubMed  CAS  Google Scholar 

  6. Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;67:189–194.

    PubMed  CAS  Google Scholar 

  7. Braune S, Reinhardt M, Schnitzer R, Riedel A, Lucking CH. Cardiac uptake of [123I] MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 1999;53:1020–1025.

    PubMed  CAS  Google Scholar 

  8. Takatsu H, Nishida H, Matsuo H, Watanabe S, Nagashima K, Wada H, et al. Cardiac sympathetic denervation from the early stage of Parkinson’s disease: clinical and experimental studies with radiolabeled MIBG. J Nucl Med 2000;41:71–77.

    PubMed  CAS  Google Scholar 

  9. Taki J, Yoshita M, Yamada M, Tonami N. Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: it can be a specific marker for Lewy body disease. Ann Nucl Med 2004;18:453–461.

    PubMed  Google Scholar 

  10. Fagret D, Wolf JE, Comet M. Myocardial uptake of meta-[123I]-iodobenzylguanidine [(123I)-MIBG] in patients with myocardial infarct. Eur J Nucl Med 1989;15:624–628.

    Article  PubMed  CAS  Google Scholar 

  11. Nagamachi S, Jinnouchi S, Kurose T, Ohnishi T, Flores LG II, Nakahara H, et al. 123I-MIBG myocardial scintigraphy in diabetic patients: relationship with 201Tl uptake and cardiac autonomic function. Ann Nucl Med 1998;12:323–331.

    Article  PubMed  CAS  Google Scholar 

  12. Merlet P, Dubois-Rande JL, Adnot S, Bourguignon MH, Benvenuti C, Loisance D, et al. Myocardial beta-adrenergic desensitization and neuronal norepinephrine uptake function in idopathic dilated cardiomyopathy. J Cardiovasc Pharmacol 1992;19:10–16.

    Article  PubMed  CAS  Google Scholar 

  13. Wakasugi S, Wada A, Hasegawa Y, Nakano S, Shibata N. Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-metaiodobenzylguanidine. J Nucl Med 1992;33:208–214.

    PubMed  CAS  Google Scholar 

  14. Spiegel J, Mollers MO. FP-CIT and MIBG scintigraphy in early. Mov Disord 2005;5:552–561.

    Article  Google Scholar 

  15. Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–510.

    Article  PubMed  CAS  Google Scholar 

  16. Imon Y, Matsuda H, Ogawa M, Kogure D, Sunohara N. SPECT image analysis using statistical parametric mapping in patients with Parkinson’s disease. J Nucl Med 1999;40:1583–1589.

    PubMed  CAS  Google Scholar 

  17. Derejko M, Slawek J, Wieczorek D, Brockhuis B, Dubaniewicz M, Lass P. Regional cerebral blood flow in Parkinson’s disease as an indicator of cognitive impairment. Nucl Med Commun 2006;27:945–951.

    Article  PubMed  Google Scholar 

  18. Mito Y, Yoshida K, Yabe I, Makino K, Tashiro K, Kikuchi S, et al. Brain SPECT analysis by 3D-SSP and clinical features of Parkinson’s disease. Hokkaido Igaku Zasshi 2006;81:15–23.

    PubMed  Google Scholar 

  19. Sakai T, Kuzuhara S. Correlation of the cognitive function and the duration of the illness with the regional cerebral blood flow in the patients with Parkinson’s disease: objective evaluation using stereotactic extraction estimation analysis in 123I-IMP SPECT (in Japanese). No To Shinkei 2006;58:29–37.

    PubMed  Google Scholar 

  20. Bohnen NI, Minoshima S, Giordani B, Frey KA, Kuhl DE. Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 1999;52:541–546.

    PubMed  CAS  Google Scholar 

  21. Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology 2005;65:1708–1715.

    Article  PubMed  CAS  Google Scholar 

  22. Arahata Y, Hirayama M, Ieda T, Koike Y, Kato T, Tadokoro M, et al. Parieto-occiptal glucose hypometabolism in Parkinson’s disease with autonomic failure. J Neurol Sci 1999;163:119–126.

    Article  PubMed  CAS  Google Scholar 

  23. Matsui H, Udaka F, Miyoshi T, Hara N, Tamura A, Oda M, et al. Brain perfusion differences between Parkinson’s disease and multiple system atrophy with predominant parkinsonian features. Parkinsonism Relat Disord 2005;11:227–232.

    Article  PubMed  Google Scholar 

  24. Van Laere K, Santens P, Bosman T, Reuck JD, Mortelmans L, Dierckx R. Statistical parametric mapping of 99mTc-ECD SPECT in idiopathic Parkinson’s disease and multiple system atrophy with predominant parkinsonian features: correlations with clinical parameters. J Nucl Med 2004;45:933–942.

    PubMed  Google Scholar 

  25. Abe Y, Kachi T, Kato T, Arahata Y, Yamada T, Washimi Y, et al. Occipital hypoperfusion in Parkinson’s disease without dementia: correlation to impaired cortical visual processing. J Neurol Neurosurg Psychiatry 2003;74:419–422.

    Article  PubMed  CAS  Google Scholar 

  26. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967;17:427–442.

    Article  PubMed  CAS  Google Scholar 

  27. Williams LN, Seignourel P, Crucian GP, Okun MS, Rodriguez RL, Skidmore FM, et al. Laterality, region, and type of motor dysfunction correlate with cognitive impairment in Parkinson’s disease. Mov Disord 2007;22:141–145.

    Article  PubMed  Google Scholar 

  28. Katzen HL, Levin BE, Weiner W. Side and type of motor symptom influence cognition in Parkinson’s disease. Mov Disord 2006;21:1947–1953.

    Article  PubMed  Google Scholar 

  29. Burn DJ, Rowan EN, Allan LM, Molloy S, O’Brien JT, McKeith IG. Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Levy bodies. J Neurol Neurosurg Psychiatry 2006;77:585–589.

    Article  PubMed  CAS  Google Scholar 

  30. Matsuda H, Yagishita A, Tsuji S, Hisada K. A quantitative approach to technetium-99m ethyl cysteinate dimer: a comparison with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med 1995;22:633–637.

    Article  PubMed  CAS  Google Scholar 

  31. Takeuchi R, Yonekura Y, Matsuda H, Konishi J. Usefulness of a three-dimensional stereotaxic ROI template on anatomically standardised 99mTc-ECD SPET. Eur J Nucl Med Mol Imaging 2002;29:331–341.

    Article  PubMed  CAS  Google Scholar 

  32. Matsui H, Udaka F, Oda M, Kubori T, Nishinaka K, Kameyama M. Metaiodobenzylguanidine (MIBG) scintigraphy at various parts of the body in Parkinson’s disease and multiple system atrophy. Auton Neurosci 2005;119:56–60.

    Article  PubMed  Google Scholar 

  33. Yoshita M. Differentiation of idiopathic Parkinson’s disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 metaiodobenzylguanidine myocardial scintigraphy. J Neurosci 1998;155:60–67.

    CAS  Google Scholar 

  34. Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH. Cardiac uptake of [123I] MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 1999;53:1020–1025.

    PubMed  CAS  Google Scholar 

  35. Wolfson LI, Leenders KL, Brown LL, Jones T. Alteration of cerebral blood flow and oxygen metabolism in Parkinson’s disease. Neurology 1985;35:1399–1405.

    PubMed  CAS  Google Scholar 

  36. Arahata Y, Kato T, Ito K, et al. PET and SPECT studies in Parkinson’s disease with dementia. Cogn Dement 2004;3:45–49.

    Google Scholar 

  37. Ito K, Morrish PK, Rakshi JS, Uema T, Ashburner J, Bailey DL, et al. Statistical parametric mapping with 18F-dopa PET shows bilaterally reduced striatal and nigral dopaminergic function in early Parkinson’s disease. J Neurosurg 1999;66:754–758.

    CAS  Google Scholar 

  38. Holthoff-Detto VA, Kessler J, Herholz K, Bonner H, Pietrzyk U, Wurker M, et al. Functional effects of striatal dysfunction in Parkinson disease. Arch Neurol 1997;54:145–150.

    PubMed  CAS  Google Scholar 

  39. Tanaka F, Vines D, Tsuchida T, Freedman M, Ichise M. Normal patterns on 99mTc-ECD brain SPECT scans in adults. J Nucl Med 2000;41:1456–1464.

    PubMed  CAS  Google Scholar 

  40. Ito H, Inoue K, Goto R, Kinomura S, Taki Y, Okada K, et al. Database of normal human cerebral blood flow measured by SPECT: I. Comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry. Ann Nucl Med 2006;20:131–138.

    Article  PubMed  CAS  Google Scholar 

  41. Hishikawa N, Hashizume Y, Yoshida M, Sobue G. Clinical and neuropathological correlates of Lewy body disease. ACTA Neuropathol 2003;105:341–350.

    PubMed  Google Scholar 

  42. Albin RL, Minoshima S, D’Amato CJ, Frey KA, Kuhl DE, Sima AAF. Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology 1996;47:462–466.

    PubMed  CAS  Google Scholar 

  43. Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SE, Quinn NP. Clinical features and natural history of multiple system atrophy: an analysis of 100 cases. Brain 1994;117:835–845.

    Article  PubMed  Google Scholar 

  44. Fukuda H. Brain morphology and function: recent development in neuroimaging. 1st ed. Tokyo: Shinko Igaku; 2005. p. 117–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Nagamachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamachi, S., Wakamatsu, H., Kiyohara, S. et al. Usefulness of rCBF analysis in diagnosing Parkinson’s disease: supplemental role with MIBG myocardial scintigraphy. Ann Nucl Med 22, 557–564 (2008). https://doi.org/10.1007/s12149-008-0156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-008-0156-x

Keywords

Navigation