Skip to main content

Advertisement

Log in

Hyperspectral image classification based on optimized convolutional neural networks with 3D stacked blocks

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

3D convolution can fully utilize the spectral-spatial characteristics of hyperspectral image (HSI), and stacked blocks with deep layers are capable of extracting hidden features and utilizing discriminant information for classification. Naturally, a 3D convolutional neural network (CNN) based on stacked blocks named SB-3D-CNN is presented for HSI classification. Moreover, the proposed network introduces the attention mechanism before the fully connected layer, which can filter out interfering information effectively. Then we optimized the architecture to obtain optimal results on three commonly used datasets of Indian Pines, Salinas and Pavia University. Experimental results demonstrate that the optimized architecture achieves better classification rates than related recent works. Because the classification accuracies on the three datasets have reached saturation, we transferred the optimized architecture to a more complex dataset adopting the airborne hyperspectral data, which obtains from Guangxi province in south China. The results show that the optimized architecture achieves superior classification accuracies compared with other state-of-the-art methods. These results also demonstrate the optimized SB-3D-CNN has the advantages of validity and portability to more complex data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450

  • Chen YS, Lin ZH, Zhao X et al (2014) Deep learning-based classification of Hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 7(6):2094–2107

    Article  Google Scholar 

  • Chen YS, Zhao X, Jia XP (2015) Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 8(6):2381–2392

    Article  Google Scholar 

  • Chen YS, Jiang HL, Li CY et al (2016) Deep feature extraction and classification of Hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251

    Article  Google Scholar 

  • Cheng G, Li ZP, Han JW et al (2018) Exploring hierarchical convolutional features for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(11):6712–6722

    Article  Google Scholar 

  • Fauvel M, Benediktsson JA, Chanussot J et al (2008) Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens 46(11):3804–3814

    Article  Google Scholar 

  • Geng J, Wang HY, Fan JC et al (2017) Deep supervised and contractive neural network for SAR image classification. IEEE Trans Geosci Remote Sens 55(4):2442–2459

    Article  Google Scholar 

  • Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. J Mach Learn Res 15:315–323

    Google Scholar 

  • Hamida AB, Benoit A, Lambert P et al (2018) 3-D deep learning approach for remote sensing image classification. IEEE Trans Geosci Remote Sens 56(8):4420–4434

    Article  Google Scholar 

  • He M, Li B, Chen H (2018) Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In: 2017 IEEE International Conference on Image Processing (ICIP)

  • Huang X, Serge B (2017) Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV)

  • Kang XD, Li ST, Fang LY et al (2014) Extended random Walker-based classification of Hyperspectral images. IEEE Trans Geosci Remote Sens 53(1):144–153

    Article  Google Scholar 

  • Kang XD, Xiang XL, Li ST et al (2017) PCA-based edge-preserving features for Hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(12):7140–7151

    Article  Google Scholar 

  • Khan MJ, Khan HS, Yousaf A et al (2018) Modern trends in Hyperspectral image analysis: a review. IEEE Access 6:14118–14129

    Article  Google Scholar 

  • Khurshid H, Khan MF (2015) Segmentation and classification using logistic regression in remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(1):224–232

    Article  Google Scholar 

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. International Conference on Learning Representations

  • Lee H, Kwon H (2017) Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process 26(10):4843–4855

    Article  Google Scholar 

  • Leng J, Li T, Bai G et al (2017) Cube-CNN-SVM: a novel Hyperspectral image classification method. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1027–1034

  • Léon B (2010) Large-scale machine learning with stochastic gradient descent. Proc of COMPSTAT:177–186

  • Li XH, Lee WS, Li MZ et al (2012) Spectral difference analysis and airborne imaging classification for citrus greening infected trees. Computers & Electronics in Agriculture 83:32–46

    Article  Google Scholar 

  • Li Y, Zhang H, Shen Q (2017) Spectral-spatial classification of Hyperspectral imagery with 3D convolutional neural network. Remote Sens 9(1):67

    Article  Google Scholar 

  • Li CM, Wang YC, Zhang XK et al (2019) Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data. Sensors 19(1)

  • Loffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167

  • Makantasis K, Karantzalos K, Doulamis A et al (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 4959–4962

  • Nesterov Y (2012) Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J Optim 22(2):341–362

    Article  Google Scholar 

  • Qi K, Wu H, Shen C et al (2015) Land-use scene classification in high-resolution remote sensing images using improved Correlatons. IEEE Geosci Remote Sens Lett 12(12):2403–2407

    Article  Google Scholar 

  • Rodarmel C, Shan J (2017) Principal component analysis for Hyperspectral image classification. Engineering of Surveying & Mapping

  • Samiappan S, Prasad S, Bruce LM (2013) Non-uniform random feature selection and kernel density scoring with SVM based ensemble classification for Hyperspectral image analysis. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 6(2):792–800

    Article  Google Scholar 

  • Song WW, Li ST, Fang LY et al (2018) Hyperspectral image classification with deep feature fusion network. IEEE Trans Geosci Remote Sens 56(6):3173–3184

    Article  Google Scholar 

  • Szegedy C, Vanhoucke V, Ioffe S et al (2016) Rethinking the inception architecture for computer vision. Computer vision and pattern recognition, In, pp 2818–2826

    Google Scholar 

  • Wei W, Zhang JY, Zhang L et al (2018) Deep cube-pair network for Hyperspectral imagery classification. Remote Sens 10(5)

  • Wu Y, He KM (2018) Group normalization. Int J Comput Vis 742–755

  • Yang LX, Yang SY, Jin PL e al (2014) Semi-supervised Hyperspectral image classification using Spatio-spectral Laplacian support vector machine. IEEE Geoscience & Remote Sensing Letters 11(3):651–655

  • Yan L, Zhu RX, Liu Y et al (2018) Color-boosted saliency-guided rotation invariant bag of visual words representation with parameter transfer for cross-domain scene-level classification. Remote Sens 10(4)

  • Zhao WZ, Du SH (2016) Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Guo, Y. & Zhang, X. Hyperspectral image classification based on optimized convolutional neural networks with 3D stacked blocks. Earth Sci Inform 15, 383–395 (2022). https://doi.org/10.1007/s12145-021-00731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-021-00731-1

Keywords

Navigation