Skip to main content
Log in

Liked Music Increases Spatial Rotation Performance Regardless of Tempo

  • Published:
Current Psychology Aims and scope Submit manuscript

Abstract

Performance on spatial rotation tasks has been shown to improve following listening to music that one likes with the explanation that the fast tempo, and the major mode associated with it, increases arousal and mood. However, given that research also shows that people sometimes like slow-tempo music as much as fast-tempo music it seems remiss that this preference effect has not been explored for slow-tempo music. We extend previous findings by using a more ecologically-valid method and explore whether the tempo effect was independent of the preference for the music, especially when the music is of a slow tempo. Participants listened to both liked and disliked music, in either a fast or slow tempo, prior to completing a series of spatial rotation tasks. In both tempos, liked music was associated with significantly better spatial rotation performance than disliked music. Interestingly, disliked, fast-tempo music was no better than liked, slow-tempo music. Results are discussed with respect to the arousal and mood literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali, S. O., & Peynircioğlu, Z. F. (2010). Intensity of emotions conveyed and elicited by familiar and unfamiliar music. Music Perception, 27, 177–182.

    Article  Google Scholar 

  • Allport, A., Antonisa, B., & Reynolds, P. (1972). On the division of attention: a disproof of the single channel hypothesis. The Quarterly Journal of Experimental Psychology, 24, 225–235.

    Article  PubMed  Google Scholar 

  • Balch, W. R., & Lewis, B. S. (1996). Music-dependent memory: the roles of tempo change and mood mediation. Journal of Experimental Psychology: Learning, Memory and Language, 22, 1354–1363.

    Article  Google Scholar 

  • Cassileth, B. R., Vickers, A. J., & Magill, L. A. (2003). Music therapy for mood disturbance during hospitalization for autogolous stem cell transplantation: a randomized controlled trial. Cancer, 98, 2723–2729. doi:10.1200/JCO.2005.11.922.

    Article  PubMed  Google Scholar 

  • Chabris, C. F. (1999). Prelude or requiem for the “Mozart effect”? Nature, 400, 826–827.

    Article  PubMed  Google Scholar 

  • Fox, E. (2008). Emotion science: cognitive and neuroscientific approaches to understanding human emotions. Hampshire: Palgrave Macmillan.

    Google Scholar 

  • Gerardi, G. M., & Gerken, L. (1995). The development of affective response to modality and melodic contour. Music Perception, 12, 279–290.

    Google Scholar 

  • Halpern, D. F. (1992). Sex differences in cognitive abilities (2nd ed.). Hillsdale: Erlbaum.

    Google Scholar 

  • Hebb, D. O. (1955). Drive and the CNS (conceptual nervous system). Psychological Review, 62, 243–354.

    Article  PubMed  Google Scholar 

  • Hetland, L. (2000). Listening to music enhances spatial-temporal reasoning: evidence for the “Mozart effect”. Journal of Aesthetic Education, 34, 105–148.

    Article  Google Scholar 

  • Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception, 20, 151–171.

    Article  Google Scholar 

  • Jones, D. M. (1999). The cognitive psychology of auditory distraction: the 1997 BPS Broadbent lecture. British Journal of Psychology, 90, 167–187.

    Article  Google Scholar 

  • Jones, D. M., & Macken, W. J. (1993). Irrelevant tones produce an irrelevant speech effect: implications for phonological coding in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 369–381.

    Article  Google Scholar 

  • Jones, D. M., & Tremblay, S. (2000). Interference in memory by process or content? A reply to Neath (2000). Psychonomic Bulletin and Review, 7, 550–558.

    Article  PubMed  Google Scholar 

  • Kimura, D. (1996). Sex, sexual orientation and sex hormones influence human cognitive function. Current Opinion in Human Neurobiology, 6, 259–263.

    Article  Google Scholar 

  • Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 51, 336–353.

    PubMed  Google Scholar 

  • Nantais, K. M., & Schellenberg, E. G. (1999). The Mozart effect: an artefact of preference. Psychological Science, 10, 370–373.

    Article  Google Scholar 

  • Perham, N., Banbury, S. P., & Jones, D. M. (2007). Reduction in auditory distraction by retrieval strategy. Memory, 15, 465–473.

    Article  PubMed  Google Scholar 

  • Perham, N., Marsh, J. E., & Jones, D. M. (2009). Syntax and serial recall: How language supports memory for order. Quarterly Journal of Experimental Psychology, 62, 1285–1293. doi:10.1080/17470210802635599.

    Article  Google Scholar 

  • Perham, N., & Sykora, M. (2012). Disliked music can be better for performance than liked music. Applied Cognitive Psychology. doi:10.1002/acp. 2826.

  • Perham, N., & Vizard, J. (2010). Can preference for background music mediate the irrelevant sound effect? Applied Cognitive Psychology, 25(4), 625–631. doi:10.1002/acp. 1731.

    Article  Google Scholar 

  • Power, M. J., & Dalgleish, T. (2008). Cognition and emotion: from order to disorder (2nd ed.). Hove: Taylor Francis.

    Google Scholar 

  • Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. Nature, 365, 611.

    Article  PubMed  Google Scholar 

  • Rickard, N. S., Toukhsati, S. R., & Field, S. E. (2005). The effect of music on cognitive performance: insight from neurobiological and animal studies. Behavioural and Cognitive Neuroscience Reviews, 4, 235. doi:10.1177/1534582305285869.

    Article  Google Scholar 

  • Salamé, P., & Baddeley, A. (1989). Effect of background music on phonological short-term memory. The Quarterly Journal of Experimental Psychology, 14, 107–122.

    Google Scholar 

  • Schachter, S., & Singer, J. E. (1962). Cognitive, social and physiological determinants of emotional state. Psychological Review, 69, 379–99.

    Article  PubMed  Google Scholar 

  • Schellenberg, E. G. (2005). Music and cognitive abilities. Current Directions in Psychological Science, 14, 322–325.

    Article  Google Scholar 

  • Schellenberg, E. G., Peretz, I., & Vieillard, S. (2008). Liking for happy- and sad-sounding music: effects of exposure. Cognition and Emotion, 22, 218–237.

    Article  Google Scholar 

  • Schlittmeier, S. J., Hellbrück, J., & Klatte, M. (2008). Does irrelevant music cause and irrelevant sound effect for auditory items? European Journal of Cognitive Psychology, 20, 252–271.

    Article  Google Scholar 

  • Shepard, R., & Metzler, J. (1971). Mental rotation of three dimensional objects. Science, 171, 701–703.

    Article  PubMed  Google Scholar 

  • Siedlecki, S. L., & Good, M. (2006). Effect of music on power, pain, depression and disability. Journal of Advanced Nursing, 54, 553–562.

    Article  Google Scholar 

  • Strayer, D. L., & Johnston, W. A. (2001). Driven to distraction: dual-task studies of simulated driving and conversing on a cellular phone. Psychological Science, 12, 462–466.

    Article  PubMed  Google Scholar 

  • Tan, S., Pfordresher, P., & Harré, R. (2010). Psychology of music. Hove and New York: Psychology Press.

    Google Scholar 

  • Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12, 248–251.

    Article  PubMed  Google Scholar 

  • Tremblay, S., Nicholls, A. P., Alford, D., & Jones, D. M. (2000). The ISE: does speech play a special role? Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1750–1754.

    Article  PubMed  Google Scholar 

  • Wyttenbach, R. A. (2006). PsyCog: explorations in perception and cognition. Sunderland: Sinauer Associates, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Perham.

Appendix

Appendix

Table 1

Table 2

Table 2 Slow tempo music as chosen by participants

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perham, N., Withey, T. Liked Music Increases Spatial Rotation Performance Regardless of Tempo. Curr Psychol 31, 168–181 (2012). https://doi.org/10.1007/s12144-012-9141-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12144-012-9141-6

Keywords

Navigation