Skip to main content
Log in

Determination of pesticides phosalone and diazinon in pistachio using ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Diazinon and phosalone are two pesticides widely used in agriculture and gardening. Because the residues of these pesticides in fruits, vegetable, and environment are dangerous for human and domestic animal health, their determination in different samples is of importance. In this work, ion mobility spectrometry in positive mode was used for determination of residues of diazinon and phosalone in pistachio. The calibration curves for these pesticides were obtained using standard solutions. The detection limits of diazinon and phosalone measured by ion mobility were 0.1 and 0.5 ppm, respectively. The pistachio samples were prepared from market and a garden near Qazvin (Iran). The measurements showed that there is no detectable phosalone in the samples, however, diazinon was detected in the pistachio of the garden. The diazinon residues in the opened- and closed-shell pistachios one day after spraying were 0.071 and 0.008 mg/kg, respectively. After 5 days, the diazinon residues reach 0.004 and 0.006 mg/kg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grimalt S, Dehouck P (2016) Review analytical methods for the determination of pesticides residues in grapes. J Chromatogr A 1433:1–23

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez M, Pico Y, Manes J (2002) Analytical methods for pesticide residue determination in bee products. J Food Prot 65(9):1502–1511

    Article  CAS  PubMed  Google Scholar 

  3. Santana ETD, Soares DF, Faria AM (2018) Development of a methodology for the determination of pesticide residues in Caja-Manga pulp (Spondias dulcis L.) using solid-liquid extraction with low-temperature partitioning. J Chem 2018:6012503

    Google Scholar 

  4. Menezes HC, Paulo BP, Paiva MJN, Cardeal Z (2016) A simple and quick method for the determination of pesticides in environmental water by HF-LPME-GC/MS. J Anal Method Chem 2016:7058709

    Article  Google Scholar 

  5. Almeida MB, Madeira TB, Watanabe LS, Meletti PC, Nixdorf SL (2019) Pesticide determination in water samples from rural area by multi-target method applying liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 30:1657–1666

    CAS  Google Scholar 

  6. Majlesi M, Massoudinejad M, Hosainzadeh F, Fattahi N (2016) Simultaneous separation and preconcentration of phosalone and chlorpyrifos in fresh vegetables using ultrasound-assisted dispersive liquid-liquid microextraction and high performance liquid chromatography. Anal Methods 8(18):3795–3801

    Article  CAS  Google Scholar 

  7. Lefar MS, Guardgli A, Chow W, Martwinski PM (1971) Determination of phosalone and its oxygen analog in citrus crops. J Agric Food Chem 19(4):742–744

    Article  CAS  Google Scholar 

  8. Pirsaheb M, Fattahi N, Amirian F, Sharafi K (2019) Determination of diazinon, phosalone and endosulfan in raw milk using continuous sample drop flow microextraction followed by high performance liquid chromatography-ultraviolet detection. J Anal Chem 74(2):114–120

    Article  Google Scholar 

  9. de Matos EM, Ribeiro LC, Prestes OD, da Silva JAG, de Farias BS, de Pinto LA, Zanella R (2019) Multiclass method for the determination of pesticide residues in oat using modified QuEChERS with altenative sorbent and liquid chromatography with tandem mass spectrometry. Food Anal Method 12(12):2835–2844

    Article  Google Scholar 

  10. Reichert B, Nunes MGP, Pizzutti IR, Costabeber IH, Fontana MZ, Janich BD, Panciera MP, Arbusti D, Cardoso CD, Chim JF (2020) Pesticide residues determination in common bean using an optimized QuEChERS approach followed by solvent exchange and GC-MS/MS analysis. J Sci Food Agric 100(6):2425–2434. https://doi.org/10.1002/jsfa.10258

    Article  CAS  PubMed  Google Scholar 

  11. Kadar A, Peyre L, Wortham H, Doumenq P (2019) A simple GC-MS method for determination of diphenylamine, tolylfluanid propargite and phosalone in liver fractions. J Chromatogr B 1113:69–76

    Article  CAS  Google Scholar 

  12. Pizutti IR, de Kok A, Cardoso CD, Reichert B, de Kroon M, Wind W, Weber Right L, da Silva RC (2012) A multi-residue method for pesticides analysis in green coffee beans using gas chromatography-negative chemical ionization mass spectrometry in selective ion monitoring mode. J Chromatogr A 1251:16–26

    Article  Google Scholar 

  13. Reichert B, de Kok A, Pizzutti IR, Scholten J, Cardoso CD, Spanjer M (2018) Simultaneous determination of 117 pesticides and 30 mycoroxins in raw coffee, without clean-up, by LC-ESI-MS/MS analysis. Anal Chim Acta 1004:40–50

    Article  CAS  PubMed  Google Scholar 

  14. Chylkova J, Tomaskova M, Svancara I, Janikova L, Selesovska R (2015) Determination of methiocarb pesticide using differential pulse voltammetry with a boron-doped diamond electrode. Anal Methods 7(11):4671–4677

    Article  CAS  Google Scholar 

  15. Chen J, Chen C (2013) A new data analysis method to determine pesticide concentrations by cyclic voltammetry. Measurement 46(6):1828–1833

    Article  Google Scholar 

  16. El-Shahawi MS, Kamal MM (1998) Determination of the pesticide chlorpyrifos by cathodic adsorptive stripping voltammetry. Fresen J Anal Chem 362:344–347

    Article  CAS  Google Scholar 

  17. Trojanowicz M, Hitchman ML (1996) Determination of pesticides using electrochemical biosensors. TrAC Trend Anal Chem 15(1):38–45

    Article  CAS  Google Scholar 

  18. Jafari MT, Azimi M (2006) Analysis of sevin, amitraz, and metalaxyl pesticides using ion mobility spectrometry. Anal Lett 39(9):2061–2071

    Article  Google Scholar 

  19. Kalhor H, Hashemipour S, Yaftian MR (2016) Ultrasound-assisted emulsification-microextraction/ion mobility spectrometry combination: application for analysis of organophosphorus pesticide residues in rice samples. Food Anal Methods 9(11):3006–3014

    Article  Google Scholar 

  20. Kalhor H, Motamedi M, Mousavi SH, Shokri AF (2016) Analysis of malathion pesticide residues in rice samples using ultrasound-assisted emulsification-microextraction coupled to UV photoionization source ion mobility spectrometry. Int J Ion Mobil Spectrom 19(4):189–195

    Article  CAS  Google Scholar 

  21. Goscinny S, McCullagh M, Far J, Pauw ED, Eppe G (2019) Towards the use of ion mobility spectrometry derived collision cross section as a screening approach for unambiguous identification of targeted pesticides in food. Rapid Commun Mass Spectrom 33(S2):34–48

    Article  CAS  PubMed  Google Scholar 

  22. Tuovinen K, Paakkanen H, Hanninen O (2000) Determination of pesticides from liquid matrices by ion mobility spectrometry. 404:7–17

  23. Zou N, Yuan C, Chen R, Yang J, Li Y, Li X, Pan C (2017) Study on mobility, distribution and rapid ion mobility spectrometry detection of seven pesticide residues in cucumber, apple, and cherry tomato. J Agric Food Chem 65(1):182–189

    Article  CAS  PubMed  Google Scholar 

  24. Ghotbadini-Bahraman N, Sheibani A (2017) Off-line coupling of QuEChERS sample preparation to ion mobility spectrometry for determination of chlorpyrifos residue in pistachio oil. Int J Ion Mobil Spectrom 20(1-2):41–45

    Article  CAS  Google Scholar 

  25. Jafari MT, Saraji M, Sherafatmand H (2014) Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography-corona discharge ion mobility spectrometry for simultaneous determination of diazinon and fenthion organophosphorus pesticides. Anal Chim Acta 814:69–78

    Article  CAS  PubMed  Google Scholar 

  26. Saraji M, Jafari MT, Amooshahi MM (2018) Sol-gel/nanoclay composite as a sorbent for microextraction in packed syringe combined with corona discharge ionization ion mobility spectrometry for determination of diazinon in water samples. J Sep Sci 41(2):493–500

    Article  CAS  PubMed  Google Scholar 

  27. Roetering S, Nazarov EG, Borsdorf H, Weickhardt C (2010) Effect of dopants on the analysis of pesticides by means of differential mobility spectrometry with atmospheric pressure photoionization. Int J ion Mobil Spectrom 13(2):47–54

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc, Wallingford

    Google Scholar 

  29. Valadbeigi Y, Ilbeigi V, Michalczuk B, Sabo M, Matejcik S (2019) Study of atmospheric pressure chemical ionization mechanism in corona discharge ion source with and without NH3 dopant by ion mobility spectrometry combined with mass spectrometry: a theoretical and experimental study. J Phys Chem A 123(1):313–322

    Article  CAS  PubMed  Google Scholar 

  30. Legislation on Maximum Residue Levels, European Commission (2008) https://ec.europa.eu/food/plant/pesticides/max_residue_levels/eu_rules/mrls_2008_en

  31. Duttweiler DW, Malakhov SG (1977) USA-USSR symposium on environmental transport and transformation of pesticides. J Agric Food Chem 25(5):975–978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Valadbeigi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadat, S.A.A., Ilbeigi, V., Valadbeigi, Y. et al. Determination of pesticides phosalone and diazinon in pistachio using ion mobility spectrometry. Int. J. Ion Mobil. Spec. 23, 127–131 (2020). https://doi.org/10.1007/s12127-020-00262-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-020-00262-3

Keywords

Navigation