Skip to main content

Advertisement

Log in

Neurobıology of Repressıon: A Hypothetıcal Interpretatıon

  • Regular Article
  • Published:
Integrative Psychological and Behavioral Science Aims and scope Submit manuscript

Abstract

Freud lived in a time when technology was incapable of explaining the biological correlates of the mental processes he described in psychoanalytic theory. During the last two decades, advances in neuroimaging methods and neuroscience have provided new insights for understanding mind-brain collaboration. Neurobiological underpinnings of psychoanalytical concepts have been an area of interest in recent years. This paper will suggest a new hypothesis for neurobiology of repression. This hypothesis will be discussed with the help of our knowledge about neurobiological mechanisms underlying perception of the emotional significance of an event, memory formation of an emotionally arousing stimulus, role of prefrontal cortex in modulation of subcortical information, neural mechanisms of suppression and molecular mechanisms of memory erasure. We suggest that dorsolateral prefrontal cortex, and especially its caudal part plays a major role for repression of childhood traumatic events. Possible molecular mechanism of memory erasure in repression is long term depression of glutamatergic neurotransmission between prefrontal cortex- thalamus- limbic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarez, P., & Squire, L. R. (1994). Memory consolidation and the medial temporal lobe: A simple network model. Proceedings of the National Academy of Sciences, 91, 7041–7045.

    Article  Google Scholar 

  • Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. Nature, 410, 366–369.

    Article  PubMed  Google Scholar 

  • Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., Glover, G. H., & Gabrieli, J. D. E. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303, 232–235.

    Article  PubMed  Google Scholar 

  • Barbas, H., & Mesulam, M. M. (1985). Cortical afferent input to the principles region of the rhesus monkey. Neuroscience, 15, 619–637.

    Article  PubMed  Google Scholar 

  • Barbas, H., & Pandya, D. N. (1989). Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology, 286, 353–375.

    Article  PubMed  Google Scholar 

  • Beauregard, M., Levesque, J., & Bourgouin, P. (2001). Of conscious self-regulation of emotion. Journal of Neuroscience, 21, 1–6.

    Google Scholar 

  • Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasioa, A. R. (1995). Double dissociation of conditioning and declerative knowledge relative to the amigdala and hippocampus in humans. Science, 269, 1115–1118.

    Article  PubMed  Google Scholar 

  • Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulated cortex. Nature, 402, 179–181.

    Article  PubMed  Google Scholar 

  • Brewin, C. R. (2001). A cognitive neuroscience account of posttraumatic stres disorder and its treatment. Behaviour Research and Therapy, 39, 373–393.

    Article  PubMed  Google Scholar 

  • Carter, C. S., & van Veen, V. (2007). Anterior cingulated cortex and conflict detection: An update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7, 367–379.

    Article  Google Scholar 

  • Cecchetto, D. F., & Saper, C. B. (1990). Role of the cerebral cortex in autonomic function. In A. D. Loewy & K. M. Spyer (Eds.), Central regulation of autonomic functions (pp. 208–223). New York: Oxford University Pres.

    Google Scholar 

  • Clem, R. L., & Huganir, R. L. (2010). Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science, 330, 1108–1112.

    Article  PubMed  Google Scholar 

  • Davidson, R. J., Putman, K. M., & Larson, C. L. (2000). Dysfunction in neural circuitry of emotion regulation- a possible prelude to violence. Science, 289, 591–594.

    Article  PubMed  Google Scholar 

  • Depue, B. E. (2009). Controlled memory suppression: Evidence from behavioral and neuro-imaging paradigms and clinical populations. A Doctor of Philosophy Thesis directed by Banich MT.

  • Depue, B. E., Banich, M. T., & Curran, T. (2006). Suppression of emotional and non-emotional content in memory: Effects of repetition on cognitive control. Psychological Science, 17, 441–447.

    Article  PubMed  Google Scholar 

  • Depue, B. E., Curran, T., & Banich, M. T. (2007). Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science, 317, 215–219.

    Article  PubMed  Google Scholar 

  • Frysztak, R. J., & Neafsey, E. J. (1994). The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat. Brain Research, 643, 181–193.

    Article  PubMed  Google Scholar 

  • Gainotti, G. (2005). Emotions, unconscious processes, and the right hemisphere. Neuro-psychoanalysis, 7, 71–81.

    Google Scholar 

  • Goldberg, E. (2009). The new executive brain: Frontal lobes in a complex world (1st ed.). New York: Oxford University Press.

    Google Scholar 

  • Gusnard, D. A., Akbudak, E., Sulman, G. L., & Raichle, M. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 4259–4264.

    Article  PubMed  Google Scholar 

  • Hoshi, E. (2006). Functional specialization within the dorsolateral prefrontal cortex: A review of anatomical and physiological studies of non-human primates. Neuroscience Research, 54, 73–84.

    Article  PubMed  Google Scholar 

  • Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulated cortex during saccade countermanding. Science, 302, 417–424.

    Article  Google Scholar 

  • Jones, K. R., Myers, B., & Herman, J. P. (2011). Stimulation of the prelimbic cortex differentially modulates neuroendocrine responses to psychogenic and systemic stressors. Physiology & Behavior, 104, 266–271.

    Article  Google Scholar 

  • Kauer, J. A., & Malenka, R. C. (2007). Synaptic plasticity and addiction. Nature Reviews Neuroscience, 8, 844–858.

    Article  PubMed  Google Scholar 

  • Kaufman, J., Plotsky, P. M., Nemeroff, C. B., & Charney, D. S. (2000). Effects of early adverse experiences on brain structure and function: Clinical implications. Biological Psychiatry, 48, 778–790.

    Article  PubMed  Google Scholar 

  • Kihlstrom, J. F. (2002). No need for repression. Trends in Cognitive Sciences, 6, 502.

    Article  PubMed  Google Scholar 

  • LaBar, K. S., LeDoux, J. E., Spencer, D. D., & Phelps, E. A. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. Journal of Neuroscience, 15, 6846–6855.

    PubMed  Google Scholar 

  • Lane, R. D., Reiman, E. M., Axelrod, B., Yun, L. S., Holmes, A., & Schwartz, G. E. (1998). Neural correlates of levels of emotional awareness: Evidence of an interaction between emotion and attention in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 10, 525–535.

    Article  PubMed  Google Scholar 

  • LeDoux, J. E. (1986). Cognitive-emotional interactions in the brain. Cognitive Emotion, 3, 267–289.

    Article  Google Scholar 

  • Loftus, E. F. (2003). Make-believe memories. American Psychologist, 58, 867–873.

    Article  PubMed  Google Scholar 

  • Mancia, M. (2006). Psychoanalysis and neuroscience. Milan: Springer.

    Book  Google Scholar 

  • Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekel, J. L., Martin, C. C., Lancaster, J. L., & Fox, P. T. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. The American Journal of Psychiatry, 156, 675–682.

    PubMed  Google Scholar 

  • McDougall, S. J., Widdop, R. E., & Lawrence, A. J. (2004). Medial prefrontal cortical integration of psychological stress in rats. European Journal of Neuroscience, 20, 2430–2440.

    Article  PubMed  Google Scholar 

  • Paus, T. (2001). Primate anterior cingulated cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417–424.

    Article  PubMed  Google Scholar 

  • Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 54, 504–514.

    Article  PubMed  Google Scholar 

  • Ploghaus, A., Tracey, I., Gati, J. S., Clare, S., Menon, R. S., Matthews, P. M., & Rawlins, J. N. (1999). Dissociating pain from its anticipation in human brain. Science, 284, 1979–1981.

    Article  PubMed  Google Scholar 

  • Radley, J. J., & Sawchenko, P. E. (2011). A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. Journal of Neuroscience, 29, 9683–9695.

    Article  Google Scholar 

  • Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 183–194.

    Article  Google Scholar 

  • Sakai, K., & Passingham, R. E. (2006). Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. Journal of Neuroscience, 26, 1211–1218.

    Article  PubMed  Google Scholar 

  • Salame, R., & Danion, J. M. (2007). Inhibition of inappropriate responses is preserved in the think-no think and impaired in the random number generation tasks in schizophrenia. Journal of International Neuropsychological Society, 13, 277–287.

    Article  Google Scholar 

  • Shin, L. M., Rauch, S. L., & Pitman, R. K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Annals of the New York Academy of Sciences, 1071, 67–79.

    Article  PubMed  Google Scholar 

  • Simpson, J. R., Drevets, W. C., Snyder, A. Z., Gusnard, D. A., & Raichle, M. E. (2001). Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proceedings of the National Academy of Sciences of the United States of America, 98, 688–693.

    Article  PubMed  Google Scholar 

  • Tamietto, M., & deGelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11, 697–708.

    Article  PubMed  Google Scholar 

  • Weddel, R. A. (1994). Effects of subcortical lesion site on human emotional behavior. Brain and Cognition, 25, 161–183.

    Article  Google Scholar 

  • Wyland, C. L., Kelley, W. M., Macrae, C. N., Gordon, H. L., & Heatherton, T. F. (2003). Neural correlates of thought suppression. Neuropsychologia, 41, 1863–1867.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslıhan Sayın.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceylan, M.E., Sayın, A. Neurobıology of Repressıon: A Hypothetıcal Interpretatıon. Integr. psych. behav. 46, 395–409 (2012). https://doi.org/10.1007/s12124-012-9197-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12124-012-9197-8

Keywords

Navigation