Skip to main content

Advertisement

Log in

Adrenarche and Middle Childhood

  • Published:
Human Nature Aims and scope Submit manuscript

Abstract

Middle childhood, the period from 6 to 12 years of age, is defined socially by increasing autonomy and emotional regulation, somatically by the development of anatomical structures for subsistence, and endocrinologically by adrenarche, the adrenal production of dehydroepiandrosterone (DHEA). Here I suggest that DHEA plays a key role in the coordinated development of the brain and body beginning with middle childhood, via energetic allocation. I argue that with adrenarche, increasing levels of circulating DHEA act to down-regulate the release of glucose into circulation and hence limit the supply of glucose which is needed by the brain for synaptogenesis. Furthermore, I suggest the antioxidant properties of DHEA may be important in maintaining synaptic plasticity throughout middle childhood within slow-developing areas of the cortex, including the insula, thamalus, and anterior cingulate cortex. In addition, DHEA may play a role in the development of body odor as a reliable social signal of behavioral changes associated with middle childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Cyberball is a virtual ball-toss game that can be used for research on ostracism, social exclusion, or rejection. See http://www1.psych.purdue.edu/~willia55/Announce/cyberball.htm (accessed August 5, 2011).

References

  • Albrecht, J., Demmel, M., Schöpf, V., Kleemann, A. M., Kopietz, R., May, J., et al. (2011). Smelling chemosensory signals of males in anxious versus nonanxious condition increases state anxiety of female subjects. Chemical Senses, 36, 19–27.

    Google Scholar 

  • Anzai, N., Kanai, Y., & Endou, H. (2006). Organic anion transporter family: current knowledge. Journal of Pharmacological Science, 100, 411–426.

    Google Scholar 

  • Aoki, K., Kikuchi, T., Mukasa, K., Ito, S., Nakajima, A., Satoh, S., et al. (2000). Dehydroepiandrosterone suppresses elevated hepatic glucose-6-phosphatase mRNA level in C57BL/KsJ-db/db mice: comparison with troglitazone. Endocrine Journal, 47, 799–804.

    Google Scholar 

  • Aoki, K., Taniguchi, H., Ito, Y., Satoh, S., Nakamura, S., Muramatsu, K., et al. (2004). Dehydroepiandrosterone decreases elevated hepatic glucose production in C57BL/KsJ-db/db mice. Life Sciences, 74, 3075–84.

    Google Scholar 

  • Auchus, R. J., & Rainey, W. E. (2004). Adrenarche—physiology, biochemistry and human disease. Clinical Endocrinology (Oxford), 60, 288–96.

    Google Scholar 

  • Basu, R., Dalla Man, C., Campioni, M., Basu, A., Nair, K. S., Jensen, M. D., et al. (2007). Two years of treatment with dehydroepiandrosterone does not improve insulin secretion, insulin action, or postprandial glucose turnover in elderly men or women. Diabetes, 56, 753–66.

    Google Scholar 

  • Benfield, L. L., Fox, K. R., Peters, D. M., Blake, H., Rogers, I., Grant, C., et al. (2008). Magnetic resonance imaging of abdominal adiposity in a large cohort of British children. International Journal of Obesity (London), 32, 91–99.

    Google Scholar 

  • Biason-Lauber, A., Zachmann, M., & Schoenle, E. J. (2000). Effect of leptin on CYP17 enzymatic activities in human adrenal cells: new insight in the onset of adrenarche. Endocrinology, 141, 1446–54.

    Google Scholar 

  • Binder, G., Weber, S., Ehrismann, M., Zaiser, N., Meisner, C., Ranke, M. B., et al. (2009). Effects of dehydroepiandrosterone therapy on pubic hair growth and psychological well-being in adolescent girls and young women with central adrenal insufficiency: a double-blind, randomized, placebo-controlled phase III trial. Journal of Clinical Endocrinology and Metabolism, 94, 1182–90.

    Google Scholar 

  • Blankenstein, R., Cleaton-Jones, P. E., Luk, K. M., & Fatti, L. P. (1990). The onset of eruption of the permanent dentition amongst South African black children. Archives of Oral Biology, 35, 225–8.

    Google Scholar 

  • Boes, A. D., Tranel, D., Anderson, S. W., & Nopoulos, P. (2008). Right anterior cingulate: a neuroanatomical correlate of aggression and defiance in boys. Behavioral Neuroscience, 122, 677–84.

    Google Scholar 

  • Bogin, B. (1999). Patterns of human growth (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  • Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I an evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271–301.

    Google Scholar 

  • Campbell, B. C. (2006). Adrenarche and the evolution of human life history. American Journal of Human Biology, 18, 569–589.

    Google Scholar 

  • Campbell, B. C., Prossinger, H., & Mbzivo, M. (2005). Timing of pubertal maturation and the onset of sexual behavior among Zimbabwe school boys. Archives of Sexual Behavior, 34, 505–16.

    Google Scholar 

  • Caviness, V. S., Jr., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek, P. A. (1996). The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cerebral Cortex, 6, 726–36.

    Google Scholar 

  • Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: what have we learned about cognitive development? Trends in Cognitive Science, 9, 104–10.

    Google Scholar 

  • Chiao, J. Y., Mathur, V. A., Harada, T., & Lipke, T. (2009). Neural basis of preference for human social hierarchy versus egalitarianism. Annals of the New York Academy of Sciences, 1167, 174–81.

    Google Scholar 

  • Charalampopoulos, I., Dermitzaki, E., Vardouli, L., Tsatsanis, C., Stournaras, C., Margioris, A. N., et al. (2005). Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization. Endocrinology, 146, 3309–18.

    Google Scholar 

  • Charalampopoulos, I., Tsatsanis, C., Dermitzaki, E., Alexaki, V. I., Castanas, E., Margioris, A. N., et al. (2004). Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proceedings of the National Academy of Sciences USA, 101, 8209–14.

    Google Scholar 

  • Chugani, H. T. (1998). A critical period of brain development: studies of cerebral glucose utilization with PET. Preventative Medicine, 27, 184–8.

    Google Scholar 

  • Cleary, M. P. (1991). The antiobesity effect of dehydroepiandrosterone in rats. Proceedings of the Society for Experimental Biology and Medicine, 196, 8–16.

    Google Scholar 

  • Collins, W.A. (1984). (ed.) Development during middle childhood: The years from six to twelve. Washington, DC: National Academy Press.

  • Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655–66.

    Google Scholar 

  • Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.

    Google Scholar 

  • Critchley, H. D. (2009). Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. International Journal of Psychophysiology, 73, 88–94.

    Google Scholar 

  • Crowley, M. J., Wu, J., Molfese, P. J., & Mayes, L. C. (2010). Social exclusion in middle childhood: rejection events, slow-wave neural activity, and ostracism distress. Social Neuroscience, 12, 1–13.

    Google Scholar 

  • D’Astous, M., Morissette, M., Tanguay, B., Callier, S., & Di Paolo, T. (2003). Dehydroepiandrosterone (DHEA) such as 17beta-estradiol prevents MPTP-induced dopamine depletion in mice. Synapse, 47, 10–4.

    Google Scholar 

  • Dean, C. E. (2000). Prasterone (DHEA) and mania. The Annals of Pharmacotherapy, 34, 1419–22.

    Google Scholar 

  • de Glisezinski, I., Larrouy, D., Bajzova, M., Koppo, K., Polak, J., Berlan, M., et al. (2009). Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. The Journal of Physiology, 587, 3393–404.

    Google Scholar 

  • Del Giudice, M. (2009). Sex, attachment, and the development of reproductive strategies. The Behavioral and Brain Sciences, 32, 1–67.

    Google Scholar 

  • Del Guidice, M., & Beslsky, J. (2010). Sex differences in attachment emerge in middle childhood: an evolutionary hypothesis. Child Development Perspectives, 4, 97–105.

    Google Scholar 

  • Del Guidice, M., Angeleri, R., & Maner, V. (2009). The juvenile transition: a developmental switch point in human life history. Developmental Reviews, 29, 1–31.

    Google Scholar 

  • Derby, C. A., Zilber, S., Brambilla, D., Morales, K. H., & McKinlay, J. B. (2006). Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts male ageing study. Clinical Endocrinology (Oxford), 65, 125–31.

    Google Scholar 

  • Dhom, G. (1973). The prepubertal and pubertal growth of the adrenal (adrenarche). Beiträge zur Pathologie, 150, 357–377.

    Google Scholar 

  • Diamond, A. (2002). Normal development of the prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. Stuss & K. T. Knight (Eds.), Principles of frontal lobe function (pp. 466–503). New York: Oxford University Press.

    Google Scholar 

  • Dorn, L. D., Rose, S. R., Rotenstein, D., Susman, E. J., Huang, B., Loucks, T. L., et al. (2008). Differences in endocrine parameters and psychopathology in girls with premature adrenarche versus on-time adrenarche. Journal of Pediatric Endocrinology & Metabolism, 21, 439–48.

    Google Scholar 

  • Dubas, J. S., Heijkoop, M., & van Aken, M. A. G. (2009). A preliminary investigation of parent-progeny olfactory recognition and parental investment. Human Nature, 20, 80–92.

    Google Scholar 

  • Ehrhart-Bornstein, M., Bornstein, S. R., Güse-Behling, H., Stromeyer, H. G., Rasmussen, T. N., Scherbaum, W. A., et al. (1994). Sympathoadrenal regulation of adrenal androstenedione release. Neuroendocrinology, 59, 406–12.

    Google Scholar 

  • Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., et al. (2009). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Science (USA), 104, 13507–12.

    Google Scholar 

  • Fehm, H. L., Kern, W., & Peters, A. (2006). The selfish brain: competition for energy resources. Progress in Brain Research, 153, 129–40.

    Google Scholar 

  • Flinn, M. V. (2006). Evolutionary ontogeny of stress response to social challenge in the human child. Developmental Review, 26, 138–174.

    Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences USA, 101, 817–819.

    Google Scholar 

  • Goldstein, D. S., & Kopin, I. J. (2008). Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: a meta-analysis. Endocrine Regulation, 42, 111–9.

    Google Scholar 

  • Guazzo, E. P., Kirkpatrick, P. J., Goodyer, I. M., Shiers, H. M., & Herbert, J. (1996). Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. Journal of Clinical Endocrinology and Metabolism, 81, 3951–60.

    Google Scholar 

  • Hadwin, J. A., Garner, M., & Perez-Olivas, G. (2006). The development of information processing biases in childhood anxiety: a review and exploration of its origins in parenting. Clinical Psychology Review, 26, 876–94.

    Google Scholar 

  • Haegler, K., Zernecke, R., Kleemann, A. M., Albrecht, J., Pollatos, O., Brückmann, H., et al. (2010). No fear no risk! Human risk behavior is affected by chemosensory anxiety signals. Neuropsychologia, 48, 3901–8.

    Google Scholar 

  • Halpern, C. T., Udry, J. R., & Suchindran, C. (1998). Monthly measures of salivary testosterone predict sexual activity in adolescent males. Archives of Sexual Behavior, 27, 445–65.

    Google Scholar 

  • Herdt, G., & McClintock, M. (2000). The magical age of 10. Archives of Sexual Behavior, 29, 587–606.

    Google Scholar 

  • Hitze, B., van Hubold, C., Dyken, R., Schlichting, K., Lehnert, H., Entringer, S., et al. (2010). How the selfish brain organizes its supply and demand. Frontiers in Neuroenergetics, 2, 7.

    Google Scholar 

  • Hochberg, Z. (2008). Juvenility in the context of life history theory. Archives of Diseases of Childhood, 93, 534–9.

    Google Scholar 

  • Hochberg, Z. (2009). Evo-devo of child growth, II: human life history and transition between its phases. European Journal of Endocrinology, 160, 135–41.

    Google Scholar 

  • Hsu, C. C. (2006). Positive correlation between anxiety severity and plasma levels of dehydroepiandrosterone sulfate in medication-free patients experiencing a major episode of depression. Psychiatry and Clinical NeuroScience, 60, 746–50.

    Google Scholar 

  • Hsu, M., Anen, C., & Quartz, S. R. (2008). The right and the good: distributive justice and neural encoding of equity and efficiency. Science, 320, 10921985.

  • Hummer, T. A., & McClintock, M. K. (2009). Putative human pheromone androstadienone attunes the mind specifically to emotional information. Hormones and Behavior, 55, 548–59.

    Google Scholar 

  • Irmak, M. K., Oztas, E., & Vural, H. (2004). Dependence of fetal hairs and sebaceous glands on fetal adrenal cortex and possible control from adrenal medulla. Medical Hypotheses, 62, 486–92.

    Google Scholar 

  • Kann, O., & Kovács, R. (2007). Mitochondria and neuronal activity. American Journal of Physiology and Cellular Physiology, 292, C641–57.

    Google Scholar 

  • Kaplowitz, P. B., Cockrell, J. L., & Young, R. B. (1986). Premature adrenarche. Clinical and diagnostic features. Clinical Pediatrics, 25, 28–34.

    Google Scholar 

  • Kramer, K. L., & Greaves, R. D. (2011). Juvenile subsistence effort, activity levels, and growth patterns: Middle childhood among Pumé foragers. Human Nature, 22. doi:10.1007/s12110-011-9122-8

  • Kramer, P. A. (1998). The costs of human locomotion: maternal investment in child transport. American Journal of Physical Anthropology, 107, 71–86.

    Google Scholar 

  • Krug, A. W., Langbein, H., Ziegler, C. G., Bornstein, S. R., Eisenhofer, G., & Ehrhart-Bornstein, M. (2009). Dehydroepiandrosterone-sulphate (DHEA-S) promotes neuroendocrine differentiation of chromaffin pheochromocytoma PC12 cells. Molecular and Cellular Endocrinology, 300, 126–31.

    Google Scholar 

  • Kuhn, F., & Natsch, A. (2009). Body odour of monozygotic human twins: A common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. Journal of the Royal Society, Interface, 63, 77–92.

    Google Scholar 

  • Labows, J. N., Preti, G., Hoelzle, E., Leyden, J., & Kligman, A. (1979). Steroid analysis of human apocrine secretion. Steroids, 34, 249–58.

    Google Scholar 

  • Labrie, F., Belanger, A., Luu-The, V., Labrie, C., Simard, J., Cusan, L., et al. (1998). DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids, 63, 322–328.

    Google Scholar 

  • Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure & Function, 214, 579–91.

    Google Scholar 

  • Lancy, D. F., & Grove, M. A. (2011). Getting noticed: middle childhood in cross-cultural perspective. Human Nature, 22. doi:10.1007/s12110-011-9117-5.

  • Leung, A. K., & Robson, W. L. (2008). Premature adrenarche. Journal of Pediatric Health Care, 22, 230–233.

    Google Scholar 

  • Li, Z., Cui, S., Zhang, Z., Zhou, R., Ge, Y., Sokabe, M., et al. (2009). DHEA-neuroprotection and -neurotoxicity after transient cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 29, 287–96.

    Google Scholar 

  • Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences USA, 106, 912–917.

    Google Scholar 

  • Liu, D., Ren, M., Bing, X., Stotts, C., Deorah, S., Love-Homan, L., et al. (2006). Dehydroepiandrosterone inhibits intracellular calcium release in beta-cells by a plasma membrane-dependent mechanism. Steroids, 71, 691–699.

    Google Scholar 

  • Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four to eight year old children. Neuropyschologia, 36, 273–293.

    Google Scholar 

  • Lundström, J. N., Boyle, J. A., Zatorre, R. J., & Jones-Gotman, M. (2008). Functional neuronal processing of body odors differs from that of similar common odors. Cerebral Cortex, 18, 1466–74.

    Google Scholar 

  • Lundström, J. N., Boyle, J. A., Zatorre, R. J., & Jones-Gotman, M. (2009). The neuronal substrates of human olfactory based kin recognition. Human Brain Mapping, 30, 2571–80.

    Google Scholar 

  • Lundström, J. N., Gonçalves, M., Esteves, F., & Olsson, M. J. (2003). Psychological effects of subthreshold exposure to the putative human pheromone 4,16-androstadien-3-one. Hormones and Behavior, 44, 395–401.

    Google Scholar 

  • MacAskill, A. F., & Kittler, J. T. (2010). Control of mitochondrial transport and localization in neurons. Trends in Cell Biology, 20, 102–12.

    Google Scholar 

  • Maccoby, E. E. (1998). The two sexes: growing up apart, coming together. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Machinal-Quélin, F., Dieudonné, M. N., Pecquery, R., Leneveu, M. C., & Giudicelli, Y. (2002). Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue. Endocrine, 18, 179–84.

    Google Scholar 

  • Maninger, N., Wolkowitz, O. M., Reus, V. I., Epel, E. S., & Mellon, S. H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Frontiers in Neuroendocrinology, 30, 65–91.

    Google Scholar 

  • Markowitz, J. S., Carson, W. H., & Jackson, C. W. (1999). Possible dihydroepiandrosterone-induced mania. Biological Psychiatry, 45, 241–242.

    Google Scholar 

  • Marlowe, F. W. (2004). What explains Hadza food sharing? Research in Economic Anthropology, 23, 69–88.

    Google Scholar 

  • McClintock, M., & Herdt, G. (1996). Rethinking puberty: the development of sexual attraction. Current Directions in Psychological Sciences, 5, 178–183.

    Google Scholar 

  • McIntosh, L. J., & Sapolsky, R. M. (1996). Glucocorticoids may enhance oxygen radical-mediated neurotoxicity. Neurotoxicology, 17, 873–82.

    Google Scholar 

  • McIntosh, L. J., Hong, K. E., & Sapolsky, R. M. (1998). Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Research, 791, 209–14.

    Google Scholar 

  • Mizuno, T., Yotsuyanagi, S., Kondo, Y., Komatsu, K., Ishiura, Y., Nakamura, Y., et al. (2006). Dehydroepiandrosterone alleviates copulatory disorder induced by social stress in male rats. The Journal of Sexual Medicine, 3, 612–618.

    Google Scholar 

  • Molinari, L., Largo, R. H., & Prader, A. (1980). Analysis of the growth spurt at age seven (mid-growth spurt). Helvetia Paediatrica, 35, 325–34.

    Google Scholar 

  • Moslemi, M. (2004). An epidemiological survey of the time and sequence of eruption of permanent teeth in 4-15-year-olds in Tehran, Iran. International Journal of Paediatric Dentistry, 14, 432–8.

    Google Scholar 

  • Mühl, A., Herkner, K. R., & Swoboda, W. (1992). The mid-growth spurt–a pre-puberty growth spurt. Review of its significance and biological correlations. Pediatric Pathology, 27, 119–23.

    Google Scholar 

  • Muller, C., Hennebert, O., & Morfin, R. (2006). The native anti-glucocorticoid paradigm. Journal of Steroid Biochemestry and Molecular Biology, 100, 95–105.

    Google Scholar 

  • Muzik, O., Janisse, J., Ager, J., Shen, C., Chugani, D. C., & Chugani, H. T. (1999). A mathematical model for the analysis of cross-sectional brain glucose metabolism data in children. Progress in Neuropsychopharmacology and Biological Psychiatry, 23, 589–600.

    Google Scholar 

  • Nakamura, Y., Gang, H. X., Suzuki, T., Sasano, H., & Rainey, W. E. (2009). Adrenal changes associated with adrenarche. Reviews in Endocrinology and Metabolic Disorders, 10, 19–26.

    Google Scholar 

  • Natsch, A., Derrer, S., Flachsmann, F., & Schmid, J. (2006). A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chemical Biodiversity, 3, 1–20.

    Google Scholar 

  • Natsch, A., Schmid, J., & Flachsmann, F. (2004). Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chemical Biodiversity, 1, 1058–72.

    Google Scholar 

  • Navar, D., Saulis, D., Corll, C., Svec, F., & Porter, J. R. (2006). Dehydroepiandrosterone (DHEA) blocks the increase in food intake caused by neuropeptide Y (NPY) in the Zucker rat. Nutrition and Neuroscience, 9, 225–32.

    Google Scholar 

  • Nawata, H., Watanabe, T., Yanase, T., Nomura, M., Ashida, K., Min, L., et al. (2010). Sex hormone and neuroendocrine aspects of the metabolic syndrome. Progress in Brain Research, 182, 175–187.

    Google Scholar 

  • Naylor, J. C., Hulette, C. M., Steffens, D. C., Shampine, L. J., Ervin, J. F., Payne, V. M., et al. (2008). Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer’s disease, and related to neuropathological disease stage. Journal of Clinical Endocrinology and Metabolism, 93, 3173–8.

    Google Scholar 

  • Nesse, R. M. (2001). The smoke detector principle: natural slection and the regulation of defensive mechanisms. In Damasio, A.R., Kagan, J., Harrington, A., Moss, B.S.H., Shaikh, R. (Eds.). Unity of Knowledge: The convergence of natural and human science. Annals of New York Academy of Science, 935, 75–85.

  • Olsson, S. B., Barnard, J., & Turr, L. (2006). Olfaction and identification of unrelated individuals: examination of the mysteries of human odor recognition. Journal of Chemical Ecology, 32, 1635–45.

    Google Scholar 

  • Orentreich, N., Brind, J. L., Rizer, R. L., & Vogelman, J. H. (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Journal of Clinical Endocrinology and Metabolism, 59, 551–55.

    Google Scholar 

  • Palmert, M. R., Hayden, D. L., Mansfield, M. J., Crigler, J. F., Jr., Crowley, W. F., Jr., Chandler, D. W., et al. (2001). The longitudinal study of adrenal maturation during gonadal suppression: evidence that adrenarche is a gradual process. Journal of Clinical Endocrinology and Metabolism, 86, 4536–42.

    Google Scholar 

  • Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60, 383–7.

    Google Scholar 

  • Paulus, M. P., & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure & Function, 214, 451–63.

    Google Scholar 

  • Patel, M. A., & Katyare, S. S. (2006a). Dehydroepiandrosterone (DHEA) treatment stimulates oxidative energy metabolism in the cerebral mitochondria from developing rats. International Journal of Developmental Neuroscience, 24, 327–34.

    Google Scholar 

  • Patel, M. A., & Katyare, S. S. (2006b). Treatment with dehydroepiandrosterone (DHEA) stimulates oxidative energy metabolism in the cerebral mitochondria. A comparative study of effects in old and young adult rats. Neuroscience Letters, 402, 131–6.

    Google Scholar 

  • Pélissier, M. A., Trap, C., Malewiak, M. I., & Morfin, R. (2004). Antioxidant effects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon, intestine and liver. Steroids, 69, 137–144.

    Google Scholar 

  • Pélissier, M. A., Muller, C., Hill, M., & Morfin, R. (2006). Protection against dextran sodium sulfate-induced colitis by dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat. Steroids, 71, 240–248.

    Google Scholar 

  • Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., et al. (2007). Individual and gender fingerprints in human body odour. Journal of the Royal Society, Interface, 4, 331–40.

    Google Scholar 

  • Pérez-Neri, I., Montes, S., Ojeda-López, C., Ramírez-Bermúdez, J., & Ríos, C. (2008). Modulation of neurotransmitter systems by dehydroepiandrosterone and dehydroepiandrosterone sulfate: mechanism of action and relevance to psychiatric disorders. Progress in Neuropsychopharmacology and Biological Psychiatry, 32, 1118–30.

    Google Scholar 

  • Pernet, A., Walker, M., Gill, G. V., Orskov, H., Alberti, K. G., & Johnston, D. G. (1984). Metabolic effects of adrenaline and noradrenaline in man: studies with somatostatin. Diabetes & Metabolism, 10, 98–105.

    Google Scholar 

  • Perrini, S., Natalicchio, A., Laviola, L., Belsanti, G., Montrone, C., Cignarelli, A., et al. (2004). Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes, 53, 41–52.

    Google Scholar 

  • Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K. M., Conrad, M., et al. (2004). The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 28, 143–80.

    Google Scholar 

  • Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828–34.

    Google Scholar 

  • Piaget, J. (1963). The origins of intelligence in children. New York: W.W. Norton.

    Google Scholar 

  • Pineiro, V., Casabiell, X., Peinó, R., Lage, M., Camiña, J. P., Menendez, C., et al. (1999). Dihydrotestosterone, stanozolol, androstenedione and dehydroepiandrosterone sulphate inhibit leptin secretion in female but not in male samples of omental adipose tissue in vitro: lack of effect of testosterone. Journal of Endocrinology, 160, 425–32.

    Google Scholar 

  • Porter, R. H., Cernoch, J. M., & Balogh, R. D. (1985). Odor signatures and kin recognition. Physiology and Behavior, 34, 445–8.

    Google Scholar 

  • Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.

    Google Scholar 

  • Prehn-Kristensen, A., Wiesner, C., Bergmann, T. O., Wolff, S., Jansen, O., Mehdorn, H. M., et al. (2009). Induction of empathy by the smell of anxiety. PloS One, 4, e5987.

    Google Scholar 

  • Reilly, D. S., van Donkelaar, P., Saavedra, S., & Woollacott, M. H. (2008). Interaction between the development of postural control and the executive function of attention. Journal of Motor Behavior, 40, 90–102.

    Google Scholar 

  • Reinehr, T., de Sousa, G., & Wabitsch, M. (2006). Relationships of IGF-I and androgens to skeletal maturation in obese children and adolescents. Journal of Pediatric Endocrinology & Metabolism, 19, 1133–40.

    Google Scholar 

  • Remer, T. (2000). Adrenarche and nutritional status. Journal of Pediatric Endocrinology & Metabolism, 13(Supplement 5), 1253–5.

    Google Scholar 

  • Remer, T., & Manz, F. (1999). Role of nutritional status in the regulation of adrenarche. Journal of Clinical Endocrinology and Metabolism, 84, 3936–44.

    Google Scholar 

  • Remer, T., & Manz, F. (2001). The midgrowth spurt in healthy children is not caused by adrenarche. Journal of Clinical Endocrinology and Metabolism, 86, 4183–6.

    Google Scholar 

  • Remer, T., Manz, F., Hartmann, M. F., Schoenau, E., & Wudy, S. A. (2009). Prepubertal healthy children’s urinary androstenediol predicts diaphyseal bone strength in late puberty. Journal of Clinical Endocrinology and Metabolism, 94, 575–8.

    Google Scholar 

  • Remer, T., Boye, K. R., Hartmann, M. F., & Wudy, S. A. (2005). Urinary markers of adrenarche: reference values in health subjects, aged 3-18 years. Journal of Clinical Endocrinology and Metabolism, 90, 2015–2021.

    Google Scholar 

  • Remer, T., Boye, K. R., Hartmann, M. F., Neu, C., Schoenau, E., Manz, F., et al. (2004). Adrenal steroid hormones and metaphyseal bone in children. Hormone Research, 62, 221–6.

    Google Scholar 

  • Remer, T., Boye, K. R., Hartmann, M., Neu, C. M., Schoenau, E., Manz, F., et al. (2003). Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. Journal of Bone and Mineral Research, 18, 1539–46.

    Google Scholar 

  • Rocher, A. B., Chapon, F., Blaizot, X., Baron, J. C., & Chavoix, C. (2003). Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. NeuroImage, 20, 1894–98.

    Google Scholar 

  • Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., et al. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 1029–40.

    Google Scholar 

  • Sánchez, J., Pérez-Heredia, F., Priego, T., Portillo, M. P., Zamora, S., Garaulet, M., et al. (2008). Dehydroepiandrosterone prevents age-associated alterations, increasing insulin sensitivity. Journal of Nutrition and Biochemistry, 19, 809–18.

    Google Scholar 

  • Schwabe, L., Tegenthoof, M., Hoffken, O., & Wolf, O. T. (2010). Concurrent glucocorticoid and noradrenergic activity shifts instrumental behavior from goal-directed to habitual control. Journal of Neuroscience, 30, 8190–8196.

    Google Scholar 

  • Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 3586–94.

    Google Scholar 

  • Sicard, F., Ehrhart-Bornstein, M., Corbeil, D., Sperber, S., Krug, A. W., Ziegler, C. G., et al. (2007). Age-dependent regulation of chromaffin cell proliferation by growth factors, dehydroepiandrosterone (DHEA), and DHEA sulfate. Proceedings of the National Academy of Science U S A., 104, 2007–12.

    Google Scholar 

  • Singer, T. (2007). The neuronal basis of empathy and fairness. Novartis Foundation Symposium, 278, 20–30. (for discussion, see pp. 30-40, 89-96, 216-221).

    Google Scholar 

  • Stewart, M. E., Downing, D. T., Cook, J. S., Hansen, J. R., & Strauss, J. S. (1992). Sebaceous gland activity and serum dehydroepiandrosterone sulfate levels in boys and girls. Archives of Dermatology, 128, 1345–8.

    Google Scholar 

  • Strous, R. D., Spivak, B., Yoran-Hegesh, R., Maayan, R., Averbuch, E., Kotler, M., et al. (2001). Analysis of neurosteroid levels in attention deficit hyperactivity disorder. The International Journal of Neuropsychopharmacology, 4, 259–64.

    Google Scholar 

  • Sulcova, J., Hill, M., Hampl, R., & Starka, L. (1997). Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulfate in normal subjects. Journal of Endocrinology, 154, 57–62.

    Google Scholar 

  • Suzuki, M., Wright, L. S., Marwah, P., Lardy, H. A., & Svendsen, C. N. (2004). Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proceedings of the National Academy of Science USA, 101, 3202–7.

    Google Scholar 

  • Tabibnia, G., Satpute, A. B., & Lieberman, M. D. (2008). The sunny side of fairness: preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry). Psychological Science, 19, 339–47.

    Google Scholar 

  • Thiboutot, D., Jabara, S., McAllister, J. M., Sivarajah, A., Gilliland, K., Cong, Z., et al. (2003). Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). Journal of Investgative Dermatology, 120, 905–14.

    Google Scholar 

  • Thompson, J. L., & Nelson, A. J. (2011). Middle childhood and modern human origins. Human Nature, 22. doi:10.1007/s12110-011-9119-3.

  • Utriainen, P., Voutilainenm, R., & Jääskeläinenm, J. (2009). Continuum of phenotypes and Sympathoadrenal function in premature adrenarche. European Journal of Endocrinology, 160, 657–65.

    Google Scholar 

  • Valle, L. D., Toffolo, V., Nardi, A., Fiore, C., Bernante, P., Di Liddo, R., et al. (2006). Tissue-specific transcriptional initiation and activity of steroid sulfatase complementing dehydroepiandrosterone sulfate uptake and intracrine steroid activations in human adipose tissue. Journal of Endocrinology, 190, 129–39.

    Google Scholar 

  • Van Bogaert, P., Wikler, D., Damhaut, P., Szliwowski, H. B., & Goldman, S. (1998). Regional changes in glucose metabolism during brain development from the age of 6 years. NeuroImage, 8, 62–8.

    Google Scholar 

  • Van Goozen, S. H., Matthys, W., Cohen-Kettenis, P. T., Thijssen, J. H. H., & van Engeland, H. (1998). Adrenal androgens and aggression in conduct disorder prepubertal boys and normal controls. Biological Psychiatry, 43, 156–158.

    Google Scholar 

  • Van Goozen, S. H., van den Ban, E., Matthys, W., Cohen-Kettenis, P. T., Thijssen, J. H., & van Engeland, H. (2000). Increased adrenal androgen functioning in children with oppositional defiant disorder: a comparison with psychiatric and normal controls. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 1446–51.

    Google Scholar 

  • Vaughn, C. L., Langeral, N. G., & O’Mally, M. J. (2003). Neuromoderation of human locomotion revealed by non-dimensional scaling. Experimental Brain Research, 153, 123–7.

    Google Scholar 

  • Villareal, D. T., & Holloszy, J. O. (2004). Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. Journal of the American Medical Association, 292, 2243–8.

    Google Scholar 

  • Vos, M., Lauwers, E., & Verstreker, P. (2010). Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Frontiers in Synaptic NeuroScience, 2, 139.

    Google Scholar 

  • Wedl, J. S., Danias, S., Schmeizle, R., & Friedrich, R. E. (2005). Eruption times of permanent teeth in children and young adolescents in Athens (Greece). Clinical Oral Investigation, 9, 131–134.

    Google Scholar 

  • Weise, M., Eisenhofer, G., & Merke, D. P. (2002). Pubertal and gender-related changes in the sympathoadrenal system in healthy children. Journal of Clinical Endocrinology and Metabolism, 87, 5038–43.

    Google Scholar 

  • Weisfeld, G. E., Czilli, T., Phillips, K. A., Gall, J. A., & Lichtman, C. M. (2003). Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance. Journal of Experimental Child Psychology, 85, 279–95.

    Google Scholar 

  • Weisner, T. W. (1984). Ecocultural niches of middle childhood: a cross-cultural perspective. In W. A. Collins (Ed.), Development of middle childhood: the years from Six to Twelve (pp. 335–369). Washington, D.C: National Academy Press.

    Google Scholar 

  • White, S. (1996). The child’s entry into the age of reason. In A. H. Sameroff & M. M. Hiath (Eds.), The five to seven year shift: the age of reason and responsibility (pp. 17–32). Chicago: University of Chicago Press.

    Google Scholar 

  • Wudy, S. A., Hartmann, M. F., & Remer, T. (2007). Sexual dimorphism in cortisol secretion starts after age 10 in healthy children: urinary cortisol metabolite excretion rates during growth. American Journal of Physiology, Endocrinology and Metabolism, 293, E970–6.

    Google Scholar 

  • Yamamoto, A., & Ito, M. (1992). Sebaceous gland activity and urinary androgen levels in children. Journal of Dermatological Science, 4, 98–104.

    Google Scholar 

  • Yamamoto, A., & Ito, M. (1994). Wax ester secretion rates and plasma dehydroepiandrosterone sulfate levels in children. Journal of Dermatology, 21, 59–60.

    Google Scholar 

  • Yamashita, R., Saito, T., Satoh, S., Aoki, K., Kaburagi, Y., & Sekihara, H. (2005). Effects of dehydroepiandrosterone on gluconeogenic enzymes and glucose uptake in human hepatoma cell line, HepG2. Endocrine Journal, 52, 727–33.

    Google Scholar 

  • Yildirim, A. S., Gumus, D., Sahin, Y. N., & Akcay, F. (2003). Dehydroepiandrosterone improves heptic anti-oxidant systems after renal ischema-reperfusion injury in rodents. Annals of Clinical Lab Science, 33, 459–464.

    Google Scholar 

  • Yorek, M. A., Coppey, L. J., Gellett, J. S., Davidson, E. P., Bing, X., Lund, D. D., et al. (2002). Effect of treatment of diabetic rats with dehydroepiandrosterone on vascular and neural function. American Journal of Physiology, Endocrinology and Metabolism, 283, E1067–75.

    Google Scholar 

  • Zheng, P. (2009). Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Progress in Neurobiology, 89, 134–52.

    Google Scholar 

  • Ziegler, C. G., Sicard, F., Lattke, P., Bornstein, S. R., Ehrhart-Bornstein, M., & Krug, A. W. (2008). Dehydroepiandrosterone induces a neuroendocrine phenotype in nerve growth factor-stimulated chromaffin pheochromocytoma PC12 cells. Endocrinology, 149, 20–28.

    Google Scholar 

Download references

Acknowledgments

The development of the ideas presented here owes much to discussion with many of my colleagues and students. I especially want to thank Jennifer Danzy and J. D. Pampush for reading an earlier version of this manuscript. I also want to thank Peter Gray for his thoughtful encouragement. Finally, I want to thank Jane Lancaster for her patience. Of course, any mistakes are my own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin C. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, B.C. Adrenarche and Middle Childhood. Hum Nat 22, 327–349 (2011). https://doi.org/10.1007/s12110-011-9120-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12110-011-9120-x

Keywords

Navigation