Skip to main content

Advertisement

Log in

Application of Flow Cytometry in the Evaluation of Primary Immunodeficiencies

  • Review Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Primary immunodeficiency disorders (PIDDs) are a heterogeneous group of inherited disorders of the immune system. Currently more than 250 different PIDDs with a known genetic defect have been recognized. The diagnosis of many of these disorders is supported strongly by a wide variety of flow cytometry applications. Flow cytometry offers a rapid and sensitive tool for diagnosis and classification of PIDDs. It is applicable in the initial workup and subsequent management of several primary immunodeficiency diseases. As our understanding of the pathogenesis and management of these diseases increases, the majority of these tests can be easily established in the diagnostic laboratory. Thus, the focus of this article is on the application of flow cytometry in the diagnosis and/or evaluation of PIDDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oliveira JB, Fleisher TA. Molecular- and flow cytometry-based diagnosis of primary immunodeficiency disorders. Curr Allergy Asthma Rep. 2010;10:460–7.

    Article  CAS  PubMed  Google Scholar 

  2. Shearer WT, Rosenblatt HM, Gelman RS, et al; Pediatric AIDS Clinical Trials Group. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112:973–80.

    Article  PubMed  Google Scholar 

  3. Shearer WT, Dunn E, Notarangelo LD, et al. Establishing the diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID and Omenn syndrome: the primary immune deficiency treatment consortium experience. J Allergy Clin Immunol. 2014;133:1092–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Al-Herz W, Bousfiha A, Casanova JL, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162.

    PubMed  PubMed Central  Google Scholar 

  5. Kalman L, Lindegren ML, Kobrynski L, et al. Mutations in genes required for T-cell development: IL7R, CD45, IL2RG, JAK3, RAG1, RAG2, ARTEMIS, and ADA and severe combined immunodeficiency: HuGE review. Gend Med. 2004;6:16–26.

    Article  CAS  Google Scholar 

  6. Villa A, Sobacchi C, Notarangelo LD, et al. V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood. 2001;97:81–8.

    Article  CAS  PubMed  Google Scholar 

  7. Stephan JL, Vlekova V, Le Deist F, et al. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J Pediatr. 1993;123:564–72.

    Article  CAS  PubMed  Google Scholar 

  8. Kwan A, Abraham RS, Currier R, et al. Newborn screening for severe combined immunodeficiency in 11 screen programs in the United States. JAMA. 2014;312:729–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pai SY, Logan BR, Griffith LM, et al. Transplantation outcomes of severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371:434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99:872–8.

    Article  CAS  PubMed  Google Scholar 

  11. Medical Advisory Committee of the Immune Deficiency Foundation, Shearer WT, Fleisher TA, Conley ME, et al. Recommendations for live viral and bacterial vaccines in immunodeficient patients and their close contacts. J Allergy Clin Immunol. 2014;133:961–6.

    Article  Google Scholar 

  12. Markert ML, Hummell DS, Rosenblatt HM, et al. Complete DiGeorge syndrome: persistence of profound immunodeficiency. J Pediatr. 1998;132:15–21.

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira JB, Bleesing JJ, Dianzani U, et al. Revised diagnostic criterial and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116:e35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chinen J, Rosenblatt HM, Smith EO, Shearer WT, Noroski LM. Long-term assessment of T-cell populations in DiGeorge syndrome. J Allergy Clin Immunol. 2003;111:573–9.

    Article  PubMed  Google Scholar 

  15. Conley ME. Genetics of hypogammaglobulinemia: what do we really know. Curr Opin Immunol. 2009;21:466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Warnatz K, Schlesier MA. Flow cytometric phenotyping of common variable immunodeficiency. Cytometry B Clin Cytom. 2008;74:261–71.

    Article  PubMed  Google Scholar 

  17. Orange JS. NK cell deficiency. J Allergy Clin Immunol. 2013;132:515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Freyer DR, Gowans LK, Warzynski M, Lee WI. Flow cytometric diagnosis of X-linked hyper-IgM syndrome: application of an accurate and convenient procedure. J Pediatr Hematol Oncol. 2004;26:363–70.

    Article  PubMed  Google Scholar 

  19. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26:454–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van de Vijver E, van den Berg TK, Kuijpers TW. Leukocyte adhesion deficiencies. Hematol Oncol Clin North Am. 2013;27:101–16.

    Article  PubMed  Google Scholar 

  21. Nakajima M, Yamada M, Yamaguchi K, et al. Possible application of flow cytometry for the evaluation of the structure and functional status of WASP in peripheral blood mononuclear cells. Eur J Haematol. 2009;82:223–30.

    Article  CAS  PubMed  Google Scholar 

  22. Kanegane H, Futatani T, Wang Y, et al. Clinical and mutational characteristics of X-linked agammaglobulinemia and its carrier identified by flow cytometric assessment combined with genetic analysis. J Allergy Clin Immunol. 2001;108:1012–20.

    Article  CAS  PubMed  Google Scholar 

  23. d’Hennezel E, Bin Dhuban K, Torgerson T, Pinccinrillo CA. The immungenetics of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). J Med Genet. 2012;49:291–302.

    Article  PubMed  Google Scholar 

  24. Johnson TS, Villanueva J, Filipovich AH, Marsh RA, Bleesing JJ. Contemporary diagnostic methods for hemophagocytic lymphohistiocytic disorders. J Immunol Methods. 2011;364:1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Jirapongsananuruk O, Malech HL, Kuhns DB, et al. Diagnostic paradigm for evaluation of male patients with chronic granulomatous disease, based on the dihydrorhodamine 123 assay. J Allergy Clin Immunol. 2003;111:374–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kuhns DB, Lavord WG, Heller T. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med. 2010;363:2600–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcenaro S, Gallo F, Martini S, et al. Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood. 2006;108:2316–23.

    Article  CAS  PubMed  Google Scholar 

  28. Fleisher TA, Dorman SE, Anderson JA, Vail M, Brown MR, Holland SM. Detection of intracellular phosphorylated STAT-1 by flow cytometry. Clin Immunol. 1999;90:425–30.

    Article  CAS  PubMed  Google Scholar 

  29. Uzel G, Frucht DM, Fleisher TA, Holland SM. Detection of intracellular phosphorylated STAT4 by flow cytometry. Clin Immunol. 2001;100:270–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Contributions

TF, MM and SR contributed in reviewing the articles and writing the paper. TF will act as guarantor for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Fleisher.

Ethics declarations

Conflict of Interest

None.

Source of Funding

This work was supported by the Intramural Research Program of the NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleisher, T.A., Madkaikar, M. & Rosenzweig, S.D. Application of Flow Cytometry in the Evaluation of Primary Immunodeficiencies. Indian J Pediatr 83, 444–449 (2016). https://doi.org/10.1007/s12098-015-2011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-015-2011-0

Keywords

Navigation