Skip to main content
Log in

Phenotype-Genotype Correlations in Congenital Isolated Growth Hormone Deficiency (IGHD)

  • Symposium on Growth Hormone
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Isolated growth hormone deficiency (IGHD) may be congenital, often due to genetic mutations, or acquired as a result of other factors such as cranial irradiation. The commonest genes implicated in its genetic etiology are those encoding growth hormone (GH1) and the receptor for GH-releasing hormone (GHRHR). Rarely, IGHD may be caused by mutations in transcription factors (HESX1, SOX3, OTX2) or be the first presentation before the development of other pituitary hormone deficiencies. IGHD has been classified in four genetic forms (type IA, IB, II and III). Despite the increasing number of genes implicated in the etiology of IGHD, mutations in known genes account only for a small percentage of cases; therefore, other as yet unidentified factors may be implicated in its etiology. Although there is no strict genotype/phenotype correlation in patients with IGHD, there are some emerging patterns that may guide us towards a genetic diagnosis of the condition. There is increasing understanding that the phenotype of patients with IGHD is highly variable and sometimes even evolving, dictating the need for long term follow-up in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mullis PE. Genetics of growth hormone deficiency. Endocrinol Metab Clin North Am. 2007;36:17–36.

    Article  PubMed  CAS  Google Scholar 

  2. Alatzoglou KS, Dattani MT. Genetic causes and treatment of isolated growth hormone deficiency-an update. Nat Rev Endocrinol. 2010;6:562–76.

    Article  PubMed  CAS  Google Scholar 

  3. Alatzoglou KS, Turton JP, Kelberman D, et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J Clin Endocrinol Metab. 2009;94:3191–9.

    Article  PubMed  CAS  Google Scholar 

  4. Procter AM, Phillips JA, Cooper DN. The molecular genetics of growth hormone deficiency. Hum Genet. 1998;103:255–72.

    Article  PubMed  CAS  Google Scholar 

  5. Wagner JK, Eble A, Hindmarsh PC, Mullis PE. Prevalence of human GH-1 gene alterations in patients with isolated growth hormone deficiency. Pediatr Res. 1998;43:105–10.

    PubMed  CAS  Google Scholar 

  6. Phillips III JA, Cogan JD. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J Clin Endocrinol Metab. 1994;78:11–6.

    Article  PubMed  CAS  Google Scholar 

  7. Cogan JD, Phillips III JA, Sakati N, Frisch H, Schober E, Milner RD. Heterogeneous growth hormone (GH) gene mutations in familial GH deficiency. J Clin Endocrinol Metab. 1993;76:1224–8.

    Article  PubMed  CAS  Google Scholar 

  8. Iughetti L, Sobrier ML, Predieri B, et al. Complex disease phenotype revealed by GH deficiency associated with a novel and unusual defect in the GH-1 gene. Clin Endocrinol (Oxf). 2008;69:170–2.

    Article  Google Scholar 

  9. Mullis PE, Robinson IC, Salemi S, et al. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? a multicenter follow-up study. J Clin Endocrinol Metab. 2005;90:2089–96.

    Article  PubMed  CAS  Google Scholar 

  10. Turton JP, Buchanan CR, Robinson IC, Aylwin SJ, Dattani MT. Evolution of gonadotropin deficiency in a patient with type II autosomal dominant GH deficiency. Eur J Endocrinol. 2006;155:793–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cogan JD, Ramel B, Lehto M, et al. A recurring dominant negative mutation causes autosomal dominant growth hormone deficiency—a clinical research center study. J Clin Endocrinol Metab. 1995;80:3591–5.

    Article  PubMed  CAS  Google Scholar 

  12. Binder G, Ranke MB. Screening for growth hormone (GH) gene splice-site mutations in sporadic cases with severe isolated GH deficiency using ectopic transcript analysis. J Clin Endocrinol Metab. 1995;80:1247–52.

    Article  PubMed  CAS  Google Scholar 

  13. Cogan JD, Prince MA, Lekhakula S, et al. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum Mol Genet. 1997;6:909–12.

    Article  PubMed  CAS  Google Scholar 

  14. Petkovic V, Godi M, Pandey AV, et al. Growth hormone (GH) deficiency type II: a novel GH-1 gene mutation (GH-R178H) affecting secretion and action. J Clin Endocrinol Metab. 2010;95:731–9.

    Article  PubMed  CAS  Google Scholar 

  15. Cogan JD, Phillips III JA, Schenkman SS, Milner RD, Sakati N. Familial growth hormone deficiency: a model of dominant and recessive mutations affecting a monomeric protein. J Clin Endocrinol Metab. 1994;79:1261–5.

    Article  PubMed  CAS  Google Scholar 

  16. Binder G, Keller E, Mix M, et al. Isolated GH deficiency with dominant inheritance: new mutations, new insights. J Clin Endocrinol Metab. 2001;86:3877–81.

    Article  PubMed  CAS  Google Scholar 

  17. Lee MS, Wajnrajch MP, Kim SS, et al. Autosomal dominant growth hormone (GH) deficiency type II: the Del32-71-GH deletion mutant suppresses secretion of wild-type GH. Endocrinology. 2000;141:883–90.

    Article  PubMed  CAS  Google Scholar 

  18. McGuinness L, Magoulas C, Sesay AK, et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology. 2003;144:720–31.

    Article  PubMed  CAS  Google Scholar 

  19. Ryther RC, McGuinness LM, Phillips III JA, et al. Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet. 2003;113:140–8.

    PubMed  CAS  Google Scholar 

  20. Salemi S, Yousefi S, Lochmatter D, et al. Isolated autosomal dominant growth hormone deficiency: stimulating mutant GH-1 gene expression drives GH-1 splice-site selection, cell proliferation, and apoptosis. Endocrinology. 2007;148:45–53.

    Article  PubMed  CAS  Google Scholar 

  21. Moseley CT, Mullis PE, Prince MA, Phillips III JA. An exon splice enhancer mutation causes autosomal dominant GH deficiency. J Clin Endocrinol Metab. 2002;87:847–52.

    Article  PubMed  CAS  Google Scholar 

  22. Petkovic V, Lochmatter D, Turton J, et al. Exon splice enhancer mutation (GH-E32A) causes autosomal dominant growth hormone deficiency. J Clin Endocrinol Metab. 2007;92:4427–35.

    Article  PubMed  CAS  Google Scholar 

  23. Shariat N, Holladay CD, Cleary RK, Phillips III JA, Patton JG. Isolated growth hormone deficiency type II caused by a point mutation that alters both splice site strength and splicing enhancer function. Clin Genet. 2008;74:539–45.

    Article  PubMed  CAS  Google Scholar 

  24. Ryther RC, Flynt AS, Harris BD, Phillips III JA, Patton JG. GH1 splicing is regulated by multiple enhancers whose mutation produces a dominant-negative GH isoform that can be degraded by allele-specific small interfering RNA (siRNA). Endocrinology. 2004;145:2988–96.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu YL, Conway-Campbell B, Waters MJ, Dannies PS. Prolonged retention after aggregation into secretory granules of human R183H-growth hormone (GH), a mutant that causes autosomal dominant GH deficiency type II. Endocrinology. 2002;143:4243–8.

    Article  PubMed  CAS  Google Scholar 

  26. Salemi S, Yousefi S, Baltensperger K, et al. Variability of isolated autosomal dominant GH deficiency (IGHD II): impact of the P89L GH mutation on clinical follow-up and GH secretion. Eur J Endocrinol. 2005;153:791–802.

    Article  PubMed  CAS  Google Scholar 

  27. Binder G, Nagel BH, Ranke MB, Mullis PE. Isolated GH deficiency (IGHD) type II: imaging of the pituitary gland by magnetic resonance reveals characteristic differences in comparison with severe IGHD of unknown origin. Eur J Endocrinol. 2002;147:755–60.

    Article  PubMed  CAS  Google Scholar 

  28. Hess O, Hujeirat Y, Wajnrajch MP, et al. Variable phenotypes in familial isolated growth hormone deficiency caused by a G6664A mutation in the GH-1 gene. J Clin Endocrinol Metab. 2007;92:4387–93.

    Article  PubMed  CAS  Google Scholar 

  29. Hamid R, Phillips III JA, Holladay C, et al. A molecular basis for variation in clinical severity of isolated growth hormone deficiency type II. J Clin Endocrinol Metab. 2009;94:4728–34.

    Article  PubMed  CAS  Google Scholar 

  30. Shariat N, Ryther RC, Phillips III JA, Robinson IC, Patton JG. Rescue of pituitary function in a mouse model of isolated growth hormone deficiency type II by RNA interference. Endocrinology. 2008;149:580–6.

    Article  PubMed  CAS  Google Scholar 

  31. Wajnrajch MP, Gertner JM, Harbison MD, Chua Jr SC, Leibel RL. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat Genet. 1996;12:88–90.

    Article  PubMed  CAS  Google Scholar 

  32. Maheshwari HG, Silverman BL, Dupuis J, Baumann G. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. J Clin Endocrinol Metab. 1998;83:4065–74.

    Article  PubMed  CAS  Google Scholar 

  33. Salvatori R, Fan X, Phillips JA, et al. Three new mutations in the gene for the growth hormone (gh)-releasing hormone receptor in familial isolated GH deficiency type 1b. J Clin Endocrinol Metab. 2001;86:273–9.

    Article  PubMed  CAS  Google Scholar 

  34. Alba M, Hall CM, Whatmore AJ, Clayton PE, Price DA, Salvatori R. Variability in anterior pituitary size within members of a family with GH deficiency due to a new splice mutation in the GHRH receptor gene. Clin Endocrinol. 2004;60:470–5.

    Article  CAS  Google Scholar 

  35. Carakushansky M, Whatmore AJ, Clayton PE, et al. A new missense mutation in the growth hormone-releasing hormone receptor gene in familial isolated GH deficiency. Eur J Endocrinol. 2003;148:25–30.

    Article  PubMed  CAS  Google Scholar 

  36. Desai MP, Upadhye PS, Kamijo T, et al. Growth hormone releasing hormone receptor (GHRH-r) gene mutation in Indian children with familial isolated growth hormone deficiency: a study from western India. J Pediatr Endocrinol Metab. 2005;18:955–73.

    Article  PubMed  CAS  Google Scholar 

  37. Kamijo T, Hayashi Y, Seo H, et al. A nonsense mutation (E72X) in growth hormone releasing hormone receptor (GHRHR) gene is a major cause of familial isolated growth hormone deficiency in Western region of India: founder effect suggested by analysis of dinucleotide repeat polymorphism close to GHRHR gene. Growth Horm IGF Res. 2004;14:394–401.

    Article  PubMed  CAS  Google Scholar 

  38. Wang Q, Diao Y, Xu Z, et al. Identification of a novel splicing mutation in the growth hormone (GH)-releasing hormone receptor gene in a Chinese family with pituitary dwarfism. Mol Cell Endocrinol. 2009;313:50–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hilal L, Hajaji Y, Vie-Luton MP, et al. Unusual phenotypic features in a patient with a novel splice mutation in the GHRHR gene. Mol Med. 2008;14:286–92.

    Article  PubMed  CAS  Google Scholar 

  40. Stewart DM, Tian L, Notarangelo LD, Nelson DL. X-linked hypogammaglobulinemia and isolated growth hormone deficiency: an update. Immunol Res. 2008;40:262–70.

    Article  PubMed  CAS  Google Scholar 

  41. Solomon NM, Ross SA, Morgan T, et al. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. J Med Genet. 2004;41:669–78.

    Article  PubMed  CAS  Google Scholar 

  42. Woods KS, Cundall M, Turton J, et al. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet. 2005;76:833–49.

    Article  PubMed  CAS  Google Scholar 

  43. Laumonnier F, Ronce N, Hamel BC, et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet. 2002;71:1450–5.

    Article  PubMed  CAS  Google Scholar 

  44. Burkitt Wright EM, Perveen R, Clayton PE, et al. X-linked isolated growth hormone deficiency: expanding the phenotypic spectrum of SOX3 polyalanine tract expansions. Clin Dysmorphol. 2009;18:218–21.

    Article  PubMed  Google Scholar 

  45. Alatzoglou KS, Kelberman D, Cowell CT, et al. Increased transactivation associated with SOX3 polyalanine tract deletion in a patient with hypopituitarism. J Clin Endocrinol Metab. 2011;96:E685–90.

    Article  PubMed  CAS  Google Scholar 

  46. Fluck C, Deladoey J, Rutishauser K, et al. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg– > Cys at codon 120 (R120C). J Clin Endocrinol Metab. 1998;83:3727–34.

    Article  PubMed  CAS  Google Scholar 

  47. Turton JP, Reynaud R, Mehta A, et al. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2005;90:4762–70.

    Article  PubMed  CAS  Google Scholar 

  48. McCabe MJ, Alatzoglou KS, Dattani MT. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab. 2011;25:115–24.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas PQ, Dattani MT, Brickman JM, et al. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet. 2001;10:39–45.

    Article  PubMed  CAS  Google Scholar 

  50. McNay DE, Turton JP, Kelberman D, et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab. 2007;92:691–7.

    Article  PubMed  CAS  Google Scholar 

  51. Henderson RA, Williamson K, Cumming S, et al. Inherited PAX6, NF1 and OTX2 mutations in a child with microphthalmia and aniridia. Eur J Hum Genet. 2007;15:898–901.

    Article  PubMed  CAS  Google Scholar 

  52. Dateki S, Fukami M, Sato N, Muroya K, Adachi M, Ogata T. OTX2 mutation in a patient with anophthalmia, short stature, and partial growth hormone deficiency: functional studies using the IRBP, HESX1, and POU1F1 promoters. J Clin Endocrinol Metab. 2008;93:3697–702.

    Article  PubMed  CAS  Google Scholar 

  53. Dateki S, Kosaka K, Hasegawa K, et al. Heterozygous orthodenticle homeobox 2 mutations are associated with variable pituitary phenotype. J Clin Endocrinol Metab. 2010;95:756–64.

    Article  PubMed  CAS  Google Scholar 

  54. Ashkenazi-Hoffnung L, Lebenthal Y, Wyatt AW, et al. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency. Hum Genet. 2010;127:721–9.

    Article  PubMed  Google Scholar 

  55. Tajima T, Ohtake A, Hoshino M, et al. OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J Clin Endocrinol Metab. 2009;94:314–9.

    Article  PubMed  CAS  Google Scholar 

  56. Diaczok D, Romero C, Zunich J, Marshall I, Radovick S. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2008;93:4351–9.

    Article  PubMed  CAS  Google Scholar 

  57. Kelberman D, Rizzoti K, Avilio A, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest. 2006;116:2442–5.

    PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

None.

Role of Funding Source

K.S Alatzoglou is the recipient of an ESPE research fellowship. MTD has been supported by the Medical Research Council (MRC) UK, the Wellcome Trust and by Great Ormond Street Children’s Charity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehul T. Dattani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alatzoglou, K.S., Dattani, M.T. Phenotype-Genotype Correlations in Congenital Isolated Growth Hormone Deficiency (IGHD). Indian J Pediatr 79, 99–106 (2012). https://doi.org/10.1007/s12098-011-0614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-011-0614-7

Keywords

Navigation