Skip to main content

Advertisement

Log in

The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is an aggressive hematologic cancer in adults. Some patients exhibit restricted T cell infiltration and do not respond to routine treatments. This may be prevented by enhancing adaptive immunity by stimulating innate immune cells inside the tumor microenvironment (TME). To activate the adaptive immunological reaction against tumors, type I interferons (IFNs) can promote the presentation of tumor-specific cytotoxic T lymphocyte (CTL) cell recruitment. During the activation of innate immunity, cyclic di-nucleotides (CDNs) bind to and stimulate the stimulator of interferon genes (STING), a protein localized inside the endoplasmic reticulum (ER) membrane, resulting in the expression of type I IFNs. The efficacy of STING agonists as effective stimulators of the anti-tumor response in AML is being investigated in numerous clinical studies. Therefore, the purpose of this investigation was to thoroughly review existing knowledge in this field and provide perspective into the clinical potential of STING agonists in AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

It is not applicable.

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.

    Article  PubMed  Google Scholar 

  2. Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He X, Zhu Y, Yang L, et al. MgFe-LDH nanoparticles: a promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci. 2021;8(9):2003535.

    Article  CAS  Google Scholar 

  4. Perl AE. The role of targeted therapy in the management of patients with AML. Blood Adv. 2017;1(24):2281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stahl M, Goldberg AD. Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets. Curr Oncol Rep. 2019;21(4):1–10.

    Article  Google Scholar 

  6. Liu H, Gao Y, Vafaei S, Gu X, Zhong X. The prognostic value of plasma Cell-free DNA concentration in the prostate cancer: a systematic review and meta-analysis. Front Oncol. 2021;11:599602.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol. 2019;10:609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smits EL, Anguille S, Berneman ZN. Interferon α may be back on track to treat acute myeloid leukemia. Oncoimmunology. 2013;2(4):e23619.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–91.

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339(6121):826–30.

    Article  CAS  PubMed  Google Scholar 

  11. Ashjari D, Karamali N, Rajabinejad M, et al. The axis of long non-coding RNA MALAT1/miR-1-3p/CXCR4 is dysregulated in patients with diabetic neuropathy. Heliyon. 2022;8(3):e09178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15(12):760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Azadeh H, Alizadeh-Navaei R, Rezaiemanesh A, Rajabinejad M. Immune-related adverse events (irAEs) in ankylosing spondylitis (AS) patients treated with interleukin (IL)-17 inhibitors: a systematic review and meta-analysis. Inflammopharmacology. 2022;30(2):435–51.

    Article  CAS  PubMed  Google Scholar 

  14. Zou M, Yang Z, Fan Y, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.988326.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Woo S-R, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–74.

    Article  CAS  PubMed  Google Scholar 

  16. Su T, Zhang Y, Valerie K, et al. STING activation in cancer immunotherapy. Theranostics. 2019;9(25):7759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87.

    Article  PubMed  Google Scholar 

  18. Sweet K, Asghari H. Acute myeloid leukemia: epidemiology and etiology. Acute Leukemias: Springer; 2021. p. 3–9.

    Google Scholar 

  19. Shafik NF, Ibraheem D, Selim MM, Allam RM, Fathalla LA. The prognostic significance of c-KIT mutations in core binding factor acute Myeloid Leukemia. Clin Lymphoma Myeloma Leuk. 2022;22(6):e363–75.

    Article  CAS  PubMed  Google Scholar 

  20. Juliusson G, Lehmann S, Lazarevic V. Epidemiology and etiology of AML. Acute Myeloid Leukemia: Springer; 2021. p. 1–22.

    Google Scholar 

  21. Guo Y, Wang W, Sun H. A systematic review and meta-analysis on the risk factors of acute myeloid leukemia. Transl Cancer Res. 2022;11(4):796.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yi M, Li A, Zhou L, et al. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017. J Hematol Oncol. 2020;13(1):1–16.

    Article  Google Scholar 

  23. Short NJ, Konopleva M, Kadia TM, et al. Advances in the treatment of acute myeloid leukemia: new drugs and new challengesadvances in AML therapeutics. Cancer Discov. 2020;10(4):506–25.

    Article  CAS  PubMed  Google Scholar 

  24. Magina KN, Pregartner G, Zebisch A, et al. Cytarabine dose in the consolidation treatment of AML: a systematic review and meta-analysis. Blood J Am Soc Hematol. 2017;130(7):946–8.

    CAS  Google Scholar 

  25. Othus M, Sekeres MA, Nand S, et al. Complete remissions (CRs) with Azacitidine regimens compared to Crs with 7+3 induction chemotherapy and the effect on overall survival. Blood. 2016;128(22):1613.

    Article  Google Scholar 

  26. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9.

    Article  CAS  PubMed  Google Scholar 

  27. Weissmann C, Nagata S, Boll W, et al. Structure and expression of human IFN-α genes. Phil Trans R Soc Lond B Biol Sci. 1982;299(1094):7–28.

    Article  CAS  Google Scholar 

  28. Hopfner K-P, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501–21.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Qu Y-Y, Liu L, et al. Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation. Cell Rep. 2021;37(2):109821.

    Article  CAS  PubMed  Google Scholar 

  30. Samimi Z, Kardideh B, Zafari P, et al. The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep. 2019;46(6):6353–60.

    Article  CAS  PubMed  Google Scholar 

  31. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS–STING pathway in health and disease. Nat Rev Genet. 2019;20(11):657–74.

    Article  CAS  PubMed  Google Scholar 

  32. Zaver SA, Woodward JJ. Cyclic dinucleotides at the forefront of innate immunity. Curr Opin Cell Biol. 2020;63:49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rajabinejad M, Lotfi R, Roghani SA, et al. Difference in the Cytomegalovirus-related clinical laboratory findings between patients with bone marrow and kidney transplantation. Res Mol Med. 2021;9(3):197.

    CAS  Google Scholar 

  34. Xu S, Tao H, Cao W, et al. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther. 2021;6(1):1–13.

    Google Scholar 

  35. Galluzzi L, Vanpouille-Box C, Bakhoum SF, Demaria S. Snapshot: cGAS-STING signaling. Cell. 2018;173(1):276-e1.

    Article  CAS  PubMed  Google Scholar 

  36. Qu Y-Y, Zhao R, Zhang H-L, et al. Inactivation of the AMPK–GATA3–ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Can Res. 2020;80(2):319–33.

    Article  CAS  Google Scholar 

  37. An X, Zhu Y, Zheng T, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol Ther Nucl Acids. 2019;14:80–9.

    Article  CAS  Google Scholar 

  38. Liu N, Pang X, Zhang H, Ji P. The cGAS-STING pathway in bacterial infection and bacterial immunity. Front Immunol. 2022;12:814709.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heipertz EL, Harper J, Walker WE. STING and TRIF contribute to mouse sepsis, depending on severity of the disease model. Shock Inj Inflamm Sepsis Lab Clin Approach. 2017;47(5):621–31.

    CAS  Google Scholar 

  40. Li Y, Wilson HL, Kiss-Toth E. Regulating STING in health and disease. J Inflamm. 2017;14(1):1–21.

    Article  Google Scholar 

  41. Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Yao C-F, Xu F-J, et al. APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat Commun. 2019;10(1):1–16.

    Google Scholar 

  43. Larkin B, Ilyukha V, Sorokin M, et al. Cutting edge: activation of STING in T cells induces type I IFN Responses and cell death. J Immunol. 2017;199(2):397–402.

    Article  CAS  PubMed  Google Scholar 

  44. Gui X, Yang H, Li T, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019;567(7747):262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng Z, Dai T, He X, et al. The interactions between cGAS-STING pathway and pathogens. Signal Transduct Target Ther. 2020;5(1):1–15.

    Google Scholar 

  46. Hemphill WO, Simpson SR, Liu M, et al. TREX1 as a novel immunotherapeutic target. Front Immunol. 2021;12:660184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Liu L, Chen WC, et al. Gestational leucylation suppresses embryonic T-box transcription factor 5 signal and causes congenital heart disease. Adv Sci. 2022;9(15):2201034.

    Article  Google Scholar 

  48. Ablasser A, Hemmerling I, Schmid-Burgk JL, et al. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. J Immunol. 2014;192(12):5993–7.

    Article  CAS  PubMed  Google Scholar 

  49. Yan N. Immune diseases associated with TREX1 and STING dysfunction. J Interf Cytokine Res. 2017;37(5):198–206.

    Article  CAS  Google Scholar 

  50. Wang D, Zhao R, Qu YY, et al. Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair. Cell Rep. 2018;25(2):398–412.

    Article  CAS  PubMed  Google Scholar 

  51. Frémond M-L, Hadchouel A, Berteloot L, et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J Allerg Clin Immunol Pract. 2021;9(2):803–18.

    Article  Google Scholar 

  52. Khorgami MR, Moradian M, Omidi N, Moghadam MYA. Management of cardiovascular disorders in patients with Noonan Syndrome: a case report. J Tehran Univ Heart Center. 2017;12(4):184.

    Google Scholar 

  53. Tabib A, Khorgami MR, Meraji M, Omidi N, Mirmesdagh Y. Accuracy of Doppler-derived indices in predicting pulmonary vascular resistance in children with pulmonary hypertension secondary to congenital heart disease with left-to-right shunting. Pediatr Cardiol. 2014;35(3):521–9.

    Article  PubMed  Google Scholar 

  54. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol. 2012;124(2):192–8.

    Article  PubMed  Google Scholar 

  55. Mahmoud SM, Paish EC, Powe DG, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  56. Vafaei S, Saeednejad Zanjani L, Habibi Shams Z, et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci Rep. 2020;10(1):1–18.

    Article  Google Scholar 

  57. Gajewski TF. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res. 2007;13(18):5256–61.

    Article  CAS  PubMed  Google Scholar 

  58. Iranshahi N, Assar S, Amiri SM, et al. Decreased gene expression of Epstein-Barr Virus-Induced Gene 3 (EBI-3) may contribute to the pathogenesis of rheumatoid arthritis. Immunol Invest. 2019;48(4):367–77.

    Article  CAS  PubMed  Google Scholar 

  59. Zafari P, Taghadosi M, Faramarzi F, Rajabinejad M, Rafiei A. Dimethyl fumarate inhibits fibroblast like synoviocytes-mediated inflammation and joint destruction in rheumatoid arthritis. Inflammation. 2022. https://doi.org/10.1007/s10753-022-01759-1.

    Article  PubMed  Google Scholar 

  60. Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med. 2011;208(10):2005–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Diamond MS, Kinder M, Matsushita H, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208(10):1989–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dunn GP, Bruce AT, Sheehan KC, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005;6(7):722–9.

    Article  CAS  PubMed  Google Scholar 

  63. Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohminami H, Yasukawa M, Fujita S. HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood J Am Soc Hematol. 2000;95(1):286–93.

    CAS  Google Scholar 

  65. Zhang L, Chen X, Liu X, et al. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. J Clin Invest. 2013;123(5):1999–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Curran E, Chen X, Corrales L, et al. STING Pathway Activation stimulates potent immunity against Acute Myeloid Leukemia. Cell Rep. 2016;15(11):2357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matikainen S, Sareneva T, Ronni T, et al. Interferon∙- activates multiple STAT proteins and upregulates proliferation-associated IL-2R∙, c-myc, and pim-1 genes in human T cells. Blood J Am Soc Hematol. 1999;93(6):1980–91.

    CAS  Google Scholar 

  68. Downey CM, Aghaei M, Schwendener RA, Jirik FR. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2’3’-cGAMP, induces M2 macrophage repolarization. PLoS ONE. 2014;9(6):e99988.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Conlon J, Burdette DL, Sharma S, et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol. 2013;190(10):5216–25.

    Article  CAS  PubMed  Google Scholar 

  70. Che X, Du XX, Cai X, et al. Single mutations reshape the structural correlation network of the DMXAA-human STING complex. J Phys Chem B. 2017;121(9):2073–82.

    Article  CAS  PubMed  Google Scholar 

  71. Song C, Liu D, Liu S, et al. SHR1032, a novel STING agonist, stimulates anti-tumor immunity and directly induces AML apoptosis. Sci Rep. 2022;12(1):8579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meric-Bernstam F, Sweis RF, Hodi FS, et al. Phase I Dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin Cancer Res. 2022;28(4):677–88.

    Article  CAS  PubMed  Google Scholar 

  73. Lee JB, Khan DH, Hurren R, et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood. 2021;138(3):234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Levis M. Midostaurin approved for FLT3-mutated AML. Blood J Am Soc Hematol. 2017;129(26):3403–6.

    CAS  Google Scholar 

  75. Lai CT, Chi CW, Wu SH, et al. Midostaurin modulates tumor microenvironment and enhances efficacy of anti-PD-1 against colon cancer. Cancers (Basel). 2022;14(19):4847. https://doi.org/10.3390/cancers14194847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kogan AA, Topper MJ, Dellomo AJ, et al. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci USA. 2022;119(27):e2123227119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stavrou S, Aguilera AN, Blouch K, Ross SR. DDX41 recognizes RNA/DNA retroviral reverse transcripts and is critical for in vivo control of murine leukemia virus infection. MBio. 2018. https://doi.org/10.1128/mBio.00923-18.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Singh RS, Vidhyasagar V, Yang S, et al. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 2022;39(8):110856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schieven G, Brown J, Swanson J, et al. editors 2018 Preclinical characterization of BMS-986301, a differentiated STING agonist with robust antitumor activity as monotherapy or in combination with anti-PD-1. Proceedings of the 33rd Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2018), Washington, DC, USA.

  80. Challa SV, Zhou S, Sheri A, et al. Preclinical studies of SB 11285, a novel STING agonist for immuno-oncology. Am Soc Clin Oncol. 2017;35(15):e14616.

    Article  Google Scholar 

  81. Endo A, Kim D-S, Huang K-C, et al. Discovery of E7766: A representative of a novel class of macrocycle-bridged STING agonists (MBSAs) with superior potency and pan-genotypic activity. Cancer Res. 2019;79(13):4456.

    Article  Google Scholar 

  82. Adam M, Yu J, Plant R, et al. Sting agonist GSK3745417 induces apoptosis, antiproliferation, and cell death in a panel of human AML cell lines and patient samples. Blood. 2022;140(1):11829.

    Article  Google Scholar 

Download references

Funding

This study was supported by grants from Health Bureau Foundation of Zhejiang Province (2020KY015) and Education Foundation of Zhejiang Province (Y202146099).

Author information

Authors and Affiliations

Authors

Contributions

XS and FS contributed to the idea design and literature search. YP, QC, and XW wrote the manuscript. XL contributed to designing the figure.

Corresponding author

Correspondence to Fangfang Shi.

Ethics declarations

Conflict of interest

None.

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Peng, Y., Wang, X. et al. The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook. Clin Transl Oncol 25, 1545–1553 (2023). https://doi.org/10.1007/s12094-022-03065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03065-6

Keywords

Navigation