Skip to main content

Advertisement

Log in

The pro-tumorigenic responses in metastatic niches: an immunological perspective

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Metastasis is the leading cause of mortality related to cancer. In the course of metastasis, cancer cells detach from the primary tumor, enter the circulation, extravasate at secondary sites, and colonize there. All of these steps are rate limiting and decrease the efficiency of metastasis. Prior to their arrival, tumor cells can modify the secondary sites. These favorable microenvironments increase the probability of successful dissemination and are referred to as pre-metastatic niches. Cancer cells use different mechanisms to induce and maintain these niches, among which immune cells play prominent roles. The immune system, including innate and adaptive, enhances recruitment, extravasation, and colonization of tumor cells at distant sites. In addition to immune cells, stromal cells can also contribute to forming pre-metastatic niches. This review summarizes the pro-metastatic responses conducted by immune cells and the assistance of stromal cells and endothelial cells in the induction of pre-metastatic niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et al. Multistep nature of metastatic inefficiency dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;153:1.

    Google Scholar 

  2. Weiss L. Metastatic inefficiency. Adv Cancer Res [Internet]. 1990 Jan 1 [cited 2021 June 12];54(C):159–211. https://pubmed.ncbi.nlm.nih.gov/1688681/.

  3. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.

    Article  Google Scholar 

  4. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93.

    Article  CAS  Google Scholar 

  5. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature [Internet]. 2005 Dec 8 [cited 2021 June 10];438(7069):820–7. https://pubmed.ncbi.nlm.nih.gov/16341007/.

  6. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell [Internet]. 2016;30(5):668–81. https://doi.org/10.1016/j.ccell.2016.09.011.

    Article  CAS  Google Scholar 

  7. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer [Internet]. 2017;17(5):302–17. https://doi.org/10.1038/nrc.2017.6.

    Article  CAS  Google Scholar 

  8. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis organotropism: redefining the congenial soil. Dev Cell [Internet]. 2019;49(3):375–91. https://doi.org/10.1016/j.devcel.2019.04.012.

    Article  CAS  Google Scholar 

  9. Chen W, Hoffmann AD, Liu H, Liu X. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol. 2018 21 [Internet]. 2018 Feb 16 [cited 2022 Aug 27];2(1):1–12. https://www.nature.com/articles/s41698-018-0047-0.

  10. Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell [Internet]. 2016;30(2):243–56. https://doi.org/10.1016/j.ccell.2016.06.021.

    Article  CAS  Google Scholar 

  11. Eveno C, Hainaud P, Rampanou A, Bonnin P, Bakhouche S, Dupuy E, et al. Proof of prometastatic niche induction by hepatic stellate cells. J Surg Res [Internet]. 2015 Apr 1 [cited 2022 Aug 27];194(2):496–504. http://www.journalofsurgicalresearch.com/article/S0022480414009950/fulltext.

  12. Li YL, Chen CH, Chen JY, Lai YS, Wang SC, Jiang SS, et al. Single-cell analysis reveals immune modulation and metabolic switch in tumor-draining lymph nodes. Oncoimmunology [Internet]. 2020. https://doi.org/10.1080/2162402X.2020.1830513.

    Article  Google Scholar 

  13. Zeng D, Wang M, Wu J, Lin S, Ye Z, Zhou R, et al. Immunosuppressive microenvironment revealed by immune cell landscape in pre-metastatic liver of colorectal cancer. Front Oncol. 2021;11(March):1–15.

    Google Scholar 

  14. Lee E, Fertig EJ, Jin K, Sukumar S, Pandey NB, Popel AS. Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun [Internet]. 2014 Sept 2 [cited 2021 June 11];5(1):1–16. Available from: www.nature.com/naturecommunications.

  15. Ara T, Song L, Shimada H, Keshelava N, Russell H V., Metelitsa LS, et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res [Internet]. 2009 Jan 1 [cited 2021 June 11];69(1):329–37. Available from: http://cancerres.aacrjournals.org/.

  16. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10(11):1349–55.

    Article  CAS  Google Scholar 

  17. Wu M, Ma M, Tan Z, Zheng H, Liu X. Neutrophil: a new player in metastatic cancers. Front Immunol. 2020;11(September):1–14.

    CAS  Google Scholar 

  18. Srivastava K, Hu J, Korn C, Savant S, Teichert M, Kapel SS, et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell. 2014;26(6):880–95.

    Article  CAS  Google Scholar 

  19. Liu S, Jiang M, Zhao Q, Li S, Peng Y, Zhang P, et al. Vascular endothelial growth factor plays a critical role in the formation of the pre-metastatic niche via prostaglandin E2. Oncol Rep [Internet]. 2014 Dec 1 [cited 2021 June 10];32(6):2477–84. https://doi.org/10.3892/or.2014.3516/abstract.

  20. Pein M, Insua-Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun [Internet]. 2020 Dec 1 [cited 2021 June 11];11(1):1–18. https://doi.org/10.1038/s41467-020-15188-x.

  21. Qian B-Z, Pollard JW. macrophage diversity enhances tumor progression and metastasis. Cell [Internet]. 2010 Apr 2 [cited 2021 Sept 2];141(1):39–51. http://www.cell.com/article/S0092867410002874/fulltext.

  22. Lamagna C, Aurrand-Lions M, Imhof BA. Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol [Internet]. 2006 Oct 1 [cited 2021 Sept 2];80(4):705–13. https://doi.org/10.1189/jlb.1105656.

  23. Wyckoff JB, Wang Y, Lin EY, Li J, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res [Internet]. 2007 Mar 15 [cited 2021 Sept 5];67(6):2649–56. Available from: https://cancerres.aacrjournals.org/content/67/6/2649.

  24. Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother [Internet]. 2020;69(9):1673–97. https://doi.org/10.1007/s00262-020-02616-6.

    Article  CAS  Google Scholar 

  25. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One [Internet]. 2009 Aug 10 [cited 2021 Sept 2];4(8):e6562. https://doi.org/10.1371/journal.pone.0006562.

  26. Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nat 2011 4757355 [Internet]. 2011 June 8 [cited 2021 Sept 3];475(7355):222–5. Available from: https://www.nature.com/articles/nature10138.

  27. Lu X, Kang Y. Chemokine (C-C Motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem [Internet]. 2009 Oct 16 [cited 2022 Aug 28];284(42):29087–96. Available from: http://www.jbc.org/article/S0021925820382764/fulltext.

  28. Kitamura T, Qian B-Z, Soong D, Cassetta L, Noy R, Sugano G, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med [Internet]. 2015 June 29 [cited 2021 Sept 3];212(7):1043–59. https://doi.org/10.1084/jem.20141836.

  29. Chen Q, Zhang XHF, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 2011;20(4):538–49.

    Article  CAS  Google Scholar 

  30. Shi H, Zhang J, Han X, Li H, Xie M, Sun Y, et al. Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1β-mediated increase in E-selectin expression. Int J Cancer [Internet]. 2017 Mar 15 [cited 2022 Aug 28];140(6):1370–83. https://doi.org/10.1002/ijc.30538.

  31. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nat 2005 4377058 [Internet]. 2005 Sept 22 [cited 2021 Sept 3];437(7058):497–504. Available from: https://www.nature.com/articles/nature03987.

  32. Wu Y, Zhou BP. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer 2010 1024 [Internet]. 2010 Jan 19 [cited 2021 Sept 8];102(4):639–44. Available from: https://www.nature.com/articles/6605530.

  33. Craene B De, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013 132 [Internet]. 2013 Jan 24 [cited 2021 Sept 8];13(2):97–110. Available from: https://www.nature.com/articles/nrc3447.

  34. Yang X, Liang X, Zheng M, Tang Y. Cellular phenotype plasticity in cancer dormancy and metastasis. Front Oncol. 2018;1(Nov):505.

    Article  Google Scholar 

  35. Martin Y del P, Park D, Ramachandran A, Ombrato L, Calvo F, Chakravarty P, et al. Mesenchymal cancer cell-stroma crosstalk promotes niche activation, epithelial reversion, and metastatic colonization. Cell Rep [Internet]. 2015 Dec 22 [cited 2021 Sept 8];13(11):2456–69. Available from: http://www.cell.com/article/S221112471501325X/fulltext.

  36. Lee C-C, Lin J-C, Hwang W-L, Kuo Y-J, Chen H-K, Tai S-K, et al. Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization. Nat Commun 2018 91 [Internet]. 2018 Sept 14 [cited 2021 Sept 8];9(1):1–18. Available from: https://www.nature.com/articles/s41467-018-06268-0.

  37. Eyles J, Puaux A-L, Wang X, Toh B, Prakash C, Hong M, et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest [Internet]. 2010 June 1 [cited 2021 Sept 6];120(6):2030–9. Available from: http://www.jci.org.

  38. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018 5012 [Internet]. 2018 Dec 13 [cited 2021 Sept 22];50(12):1–11. Available from: https://www.nature.com/articles/s12276-018-0191-1.

  39. Kitamura T, Doughty-Shenton D, Cassetta L, Fragkogianni S, Brownlie D, Kato Y, et al. Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer. Front Immunol. 2018;8(Nov):1.

    Google Scholar 

  40. Brownlie D, Doughty-Shenton D, Soong DY, Nixon C, Carragher NO, Carlin LM, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer [Internet]. 2021 Jan 1 [cited 2021 Sept 6];9(1):e001740. Available from: https://jitc.bmj.com/content/9/1/e001740.

  41. Clausen J, Vergeiner B, Enk M. Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology. 2003;207(2):85–93.

    Article  CAS  Google Scholar 

  42. Dons’koi B, Chernyshov V, Osypchuk D. Measurement of NK activity in whole blood by the CD69 up-regulation after co-incubation with K562, comparison with NK cytotoxicity assays and CD107a degranulation assay. J Immunol Methods. 2011;372(1–2):187–95.

  43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2011 Mar 4 [cited 2021 Sept 7];144(5):646–74. Available from: http://www.cell.com/article/S0092867411001279/fulltext.

  44. Valls AF, Knipper K, Giannakouri E, Sarachaga V, Hinterkopf S, Wuehrl M, et al. VEGFR1+ metastasis—associated macrophages contribute to metastatic angiogenesis and influence colorectal cancer patient outcome. Clin Cancer Res [Internet]. 2019 Sept 15 [cited 2021 Sept 7];25(18):5674–85. Available from: https://clincancerres.aacrjournals.org/content/25/18/5674.

  45. Van Egmond M, Bakema JE. Neutrophils as effector cells for antibody-based immunotherapy of cancer. Semin Cancer Biol. 2013;23(3):190–9.

    Article  Google Scholar 

  46. Hubert P, Heitzmann A, Viel S, Nicolas A, Sastre-Garau X, Oppezzo P, et al. Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res [Internet]. 2011 Aug 1 [cited 2021 Aug 27];71(15):5134–43. Available from: https://cancerres.aacrjournals.org/content/71/15/5134.

  47. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell [Internet]. 2011 Sept 13 [cited 2021 Sept 16];20(3):300–14. Available from: http://www.cell.com/article/S1535610811003096/fulltext.

  48. López-Lago MA, Posner S, Thodima VJ, Molina AM, Motzer RJ, Chaganti RSK. Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene 2013 3214 [Internet]. 2012 June 4 [cited 2021 Sept 16];32(14):1752–60. Available from: https://www.nature.com/articles/onc2012201.

  49. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AAR, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522(7556):349–53.

    Article  CAS  Google Scholar 

  50. Lee L-F, Hellendall RP, Wang Y, Haskill JS, Mukaida N, Matsushima K, et al. IL-8 Reduced Tumorigenicity of Human Ovarian Cancer In Vivo Due to Neutrophil Infiltration. J Immunol [Internet]. 2000 Mar 1 [cited 2021 Dec 15];164(5):2769–75. Available from: https://www.jimmunol.org/content/164/5/2769.

  51. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell [Internet]. 2009;16(3):183–94. https://doi.org/10.1016/j.ccr.2009.06.017.

  52. Coffelt SB, Wellenstein MD, De Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer [Internet]. 2016;16(7):431–46. https://doi.org/10.1038/nrc.2016.52.

  53. Patel S, Fu S, Mastio J, Dominguez GA, Purohit A, Kossenkov A, et al. Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol [Internet]. 2018;19(11):1236–47. https://doi.org/10.1038/s41590-018-0229-5.

    Article  CAS  Google Scholar 

  54. Casbon AJ, Reynau D, Park C, Khu E, Gan DD, Schepers K, et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA. 2015;112(6):E566–75.

    Article  CAS  Google Scholar 

  55. Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci USA. 2010;107(50):21248–55.

    Article  CAS  Google Scholar 

  56. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, et al. Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 2010;70(15):6139–49.

    Article  CAS  Google Scholar 

  57. Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature [Internet]. 2019;566(7745):553–7. https://doi.org/10.1038/s41586-019-0915-y.

    Article  CAS  Google Scholar 

  58. Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature [Internet]. 2015;528(7582):413–7. https://doi.org/10.1038/nature16140.

    Article  CAS  Google Scholar 

  59. Aarts CEM, Kuijpers TW. Neutrophils as myeloid-derived suppressor cells. Eur J Clin Invest. 2018;48(June):1.

    Google Scholar 

  60. Shojaei F, Wu X, Zhong C, Yu L, Liang X-H, Yao J, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nat 2007 4507171 [Internet]. 2007 Dec 6 [cited 2021 Aug 27];450(7171):825–31. Available from: https://www.nature.com/articles/nature06348.

  61. Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol. 2018;1(June):1298.

  62. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol [Internet]. 2003 Mar 15 [cited 2021 Sept 16];170(6):3233–42. Available from: https://www.jimmunol.org/content/170/6/3233.

  63. Anceriz N, Vandal K, Tessier PA. S100A9 mediates neutrophil adhesion to fibronectin through activation of b2 integrins. 2007 [cited 2021 Sept 1]. Available from: www.elsevier.com/locate/ybbrc.

  64. Wang Z, Yang C, Li L, Zhang Z, Pan J, Su K, et al. CD62Ldim neutrophils specifically migrate to the lung and participate in the formation of the pre-metastatic niche of breast cancer. Front Oncol. 2020;10(October):1–13.

    CAS  Google Scholar 

  65. Deryugina EI, Quigley JP, Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  Google Scholar 

  66. Barillari G. The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process. Int J Mol Sci. 2020;21:4526 [Internet]. 2020 June 25 [cited 2021 Sept 2];21(12):4526. Available from: https://www.mdpi.com/1422-0067/21/12/4526/htm.

  67. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–44.

    Article  CAS  Google Scholar 

  68. HB A, KJ C, B F, DL G, LM M. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res [Internet]. 2006 Jan 1 [cited 2021 Aug 27];66(1):259–66. Available from: https://pubmed.ncbi.nlm.nih.gov/16397239/.

  69. El RT, Catena R, Lee S, Stawowczyk M, Joshi N, Fischbach C, et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA. 2015;112(52):16000–5.

    Article  Google Scholar 

  70. Lawler J. Thrombospondin‐1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med [Internet]. 2002 [cited 2021 Aug 27];6(1):1. Available from: /pmc/articles/PMC6740251/.

  71. NV L, M S, DS A, JA L, L W, DF M, et al. ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J [Internet]. 2006 Nov 15 [cited 2021 Aug 27];25(22):5270–83. Available from: https://pubmed.ncbi.nlm.nih.gov/17082774/.

  72. Nija RJ, Sanju S, Sidharthan N, Mony U. Extracellular trap by blood cells: clinical implications. Tissue Eng Regen Med 2020 172 [Internet]. 2020 Feb 29 [cited 2022 Aug 27];17(2):141–53. Available from: https://doi.org/10.1007/s13770-020-00241-z.

  73. Chen Q, Zhang L, Li X, Zhuo W. Neutrophil extracellular traps in tumor metastasis: pathological functions and clinical applications. Cancers (Basel). 2021;13(11):1.

    Article  Google Scholar 

  74. Najmeh S, Cools-Lartigue J, Rayes RF, Gowing S, Vourtzoumis P, Bourdeau F, et al. Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions. Int J Cancer. 2017;140(10):2321–30.

    Article  CAS  Google Scholar 

  75. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res [Internet]. 2016 Mar 15 [cited 2021 Sept 22];76(6):1367–80. Available from: https://cancerres.aacrjournals.org/content/76/6/1367.

  76. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58.

    Article  CAS  Google Scholar 

  77. Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R, et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol. 2020;13(1):1–15.

    Article  CAS  Google Scholar 

  78. Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature [Internet]. 2020;583(7814):133–8. https://doi.org/10.1038/s41586-020-2394-6.

    Article  CAS  Google Scholar 

  79. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2015 222 [Internet]. 2016 Jan 18 [cited 2021 Sept 14];22(2):146–53. Available from: https://www.nature.com/articles/nm.4027.

  80. Filipenko NR, Attwell S, Roskelley C, Dedhar S. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via α-PIX. Oncogene 2005 2438 [Internet]. 2005 May 9 [cited 2021 Sept 14];24(38):5837–49. Available from: https://www.nature.com/articles/1208737.

  81. Diny NL, Rose NR, Čiháková D. Eosinophils in autoimmune diseases. Front Immunol. 2017;8(11):484.

    Article  Google Scholar 

  82. O’Sullivan JA, Bochner BS. Eosinophils and eosinophil-associated diseases: an update. J Allergy Clin Immunol [Internet]. 2018 Feb 1 [cited 2022 Aug 25];141(2):505–17. Available from: http://www.jacionline.org/article/S0091674917315877/fulltext.

  83. Li F, Du X, Lan F, Li N, Zhang C, Zhu C, et al. Eosinophilic inflammation promotes CCL6-dependent metastatic tumor growth. Sci Adv [Internet]. 2021 May 1 [cited 2022 Aug 26];7(22). Available from: https://doi.org/10.1126/sciadv.abb5943.

  84. Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hämmerling GJ. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat Immunol 2015 166 [Internet]. 2015 Apr 27 [cited 2022 Aug 25];16(6):609–17. Available from: https://www.nature.com/articles/ni.3159.

  85. Cederberg RA, Franks SE, Wadsworth BJ, So A, Decotret LR, Hall MG, et al. Eosinophils decrease pulmonary metastatic mammary tumor growth. Front Oncol. 2022;8:2689.

    Google Scholar 

  86. Kienzl M, Hasenoehrl C, Valadez-Cosmes P, Maitz K, Sarsembayeva A, Sturm E, et al. IL-33 reduces tumor growth in models of colorectal cancer with the help of eosinophils. Oncoimmunology [Internet]. 2020 Jan 1 [cited 2022 Aug 25];9(1). Available from: https://doi.org/10.1080/2162402X.2020.1776059.

  87. Grisaru-Tal S, Dulberg S, Beck L, Zhang C, Itan M, Hediyeh-Zadeh S, et al. Metastasis-entrained eosinophils enhance lymphocyte-mediated antitumor immunity. Cancer Res [Internet]. 2021 Nov 1 [cited 2022 Aug 26];81(21):5555–71. Available from: https://aacrjournals.org/cancerres/article/81/21/5555/670479/Metastasis-Entrained-Eosinophils-Enhance.

  88. Schuijs MJ, Png S, Richard AC, Tsyben A, Hamm G, Stockis J, et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat Immunol 2020 219 [Internet]. 2020 Aug 3 [cited 2022 Aug 26];21(9):998–1009. Available from: https://www.nature.com/articles/s41590-020-0745-y.

  89. Zaynagetdinov R, Sherrill TP, Gleaves LA, McLoed AG, Saxon JA, Habermann AC, et al. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res [Internet]. 2015 Apr 15 [cited 2022 Aug 26];75(8):1624–34. Available from: https://aacrjournals.org/cancerres/article/75/8/1624/606678/Interleukin-5-Facilitates-Lung-Metastasis-by.

  90. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev [Internet]. 2018 Oct 1 [cited 2021 Sept 18];32(19–20):1267–84. Available from: http://genesdev.cshlp.org/content/32/19-20/1267.full.

  91. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006;1(90):1–50.

    Google Scholar 

  92. Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-α , and granulocyte-colony-stimulating factor by human airway epithelial cells. https://doi.org/10.1165/ajrcmb2664757 [Internet]. 2012 Dec 14 [cited 2021 Sept 22];26(6):748–53. Available from: www.atsjournals.org.

  93. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau C-S, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nat 2015 5227556 [Internet]. 2015 Mar 30 [cited 2021 Sept 11];522(7556):345–8. Available from: https://www.nature.com/articles/nature14282.

  94. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 2011 112 [Internet]. 2011 Jan 24 [cited 2021 Sept 11];11(2):135–41. Available from: https://www.nature.com/articles/nrc3001.

  95. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science (80–). 2001;294(5545):1337–40.

  96. Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA, et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell [Internet]. 2016;166(5):1117-1131.e14. https://doi.org/10.1016/j.cell.2016.07.032.

    Article  CAS  Google Scholar 

  97. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL, et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res [Internet]. 2009 July 15 [cited 2021 Sept 18];69(14):5996–6004. Available from: https://cancerres.aacrjournals.org/content/69/14/5996.

  98. Giroux M, Yurchenko E, St.-Pierre J, Piccirillo CA, Perreault C. T regulatory cells control numbers of NK cells and CD8α+ immature dendritic cells in the lymph node paracortex. J Immunol [Internet]. 2007 Oct 1 [cited 2021 Sept 18];179(7):4492–502. Available from: https://www.jimmunol.org/content/179/7/4492.

  99. Barao I, Hanash AM, Hallett W, Welniak LA, Sun K, Redelman D, et al. Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc Natl Acad Sci [Internet]. 2006 Apr 4 [cited 2021 Sept 18];103(14):5460–5. Available from: https://www.pnas.org/content/103/14/5460.

  100. Terme M, Chaput N, Combadiere B, Ma A, Ohteki T, Zitvogel L. Regulatory T cells control dendritic Cell/NK cell cross-talk in lymph nodes at the steady state by inhibiting CD4+ self-reactive T cells. J Immunol [Internet]. 2008 Apr 1 [cited 2021 Sept 18];180(7):4679–86. Available from: https://www.jimmunol.org/content/180/7/4679.

  101. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 2020 401 [Internet]. 2020 Feb 7 [cited 2021 Sept 16];40(1):1–16. Available from: https://doi.org/10.1186/s41232-019-0111-3.

  102. Monteiro AC, Leal AC, Gonçalves-Silva T, Mercadante ACT, Kestelman F, Chaves SB, et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One [Internet]. 2013 July 18 [cited 2021 Sept 11];8(7):e68171. Available from: https://doi.org/10.1371/journal.pone.0068171.

  103. Monteiro AC, Bonomo A. CD8+ T cells from experimental in situ breast carcinoma interfere with bone homeostasis. Bone. 2021;1(150): 116014.

    Article  Google Scholar 

  104. Gu Y, Liu Y, Fu L, Zhai L, Zhu J, Han Y, et al. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat Med 2019 252 [Internet]. 2019 Jan 14 [cited 2021 Sept 12];25(2):312–22. Available from: https://www.nature.com/articles/s41591-018-0309-y.

  105. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem [Internet]. 2003 June 13 [cited 2021 Sept 16];278(24):21631–8. Available from: https://pubmed.ncbi.nlm.nih.gov/12690099/.

  106. Liu F, Lang R, Wei J, Fan Y, Cui L, Gu F, et al. Increased expression of SDF-1/CXCR4 is associated with lymph node metastasis of invasive micropapillary carcinoma of the breast. Histopathology [Internet]. 2009 May 1 [cited 2021 Sept 16];54(6):741–50. Available from: https://doi.org/10.1111/j.1365-2559.2009.03289.x.

  107. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer [Internet]. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  Google Scholar 

  108. Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis [Internet]. 2019;36(3):171–98. https://doi.org/10.1007/s10585-019-09966-1.

    Article  CAS  Google Scholar 

  109. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73.

    Article  CAS  Google Scholar 

  110. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res [Internet]. 2012 Oct 1 [cited 2021 Dec 7];72(19):5130–40. Available from: https://cancerres.aacrjournals.org/content/72/19/5130.

  111. Huang M, Li Y, Zhang H, Nan F. Breast cancer stromal fibroblasts promote the generation of CD44 +CD24-cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res [Internet]. 2010 June 22 [cited 2021 Dec 7];29(1):1–10. Available from: https://doi.org/10.1186/1756-9966-29-80.

  112. Liu L, Zhang Z, Zhou L, Hu L, Yin C, Qing D, et al. Cancer associated fibroblasts-derived exosomes contribute to radioresistance through promoting colorectal cancer stem cells phenotype. Exp Cell Res. 2020;391(2): 111956.

    Article  CAS  Google Scholar 

  113. Gui Y, Aguilar-Mahecha A, Krzemien U, Hosein A, Buchanan M, Lafleur J, et al. Metastatic breast carcinoma—associated fibroblasts have enhanced protumorigenic properties related to increased IGF2 expression. Clin Cancer Res [Internet]. 2019 Dec 1 [cited 2021 Sept 13];25(23):7229–42. Available from: https://clincancerres.aacrjournals.org/content/25/23/7229.

  114. Wang Z, Liu J, Huang H, Ye M, Li X, Wu R, et al. Metastasis-associated fibroblasts: an emerging target for metastatic cancer. Biomark Res 2021 91 [Internet]. 2021 June 10 [cited 2021 Sept 13];9(1):1–11. Available from: https://doi.org/10.1186/s40364-021-00305-9.

  115. Walser TC, Rifat S, Ma X, Kundu N, Ward C, Goloubeva O, et al. Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res [Internet]. 2006 Aug 1 [cited 2021 Sept 13];66(15):7701–7. Available from: https://cancerres.aacrjournals.org/content/66/15/7701.

  116. Shani O, Vorobyov T, Monteran L, Lavie D, Cohen N, Raz Y, et al. Fibroblast-derived IL33 facilitates breast cancer metastasis by modifying the immune microenvironment and driving type 2 immunity. Cancer Res [Internet]. 2020 Dec 1 [cited 2021 Sept 14];80(23):5317–29. Available from: https://cancerres.aacrjournals.org/content/80/23/5317.

  117. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity [Internet]. 2019 Apr 16 [cited 2021 Sept 14];50(4):778–95. Available from: http://www.cell.com/article/S1074761319301293/fulltext.

  118. Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol [Internet]. 2017 June 1 [cited 2021 Sept 15];47(6):946–53. Available from: https://doi.org/10.1002/eji.201646837.

  119. Sun X, Wang X, Yan C, Zheng S, Rong Gao |, Huang | Fang, et al. Tumor cell-released LC3-positive EVs promote lung metastasis of breast cancer through enhancing premetastatic niche formation. Cancer Sci [Internet]. 2022 Aug 7 [cited 2022 Aug 28];00:1–12. Available from: https://doi.org/10.1111/cas.15507.

  120. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006 812 [Internet]. 2006 Nov 26 [cited 2021 Aug 27];8(12):1369–75. Available from: https://www.nature.com/articles/ncb1507.

  121. Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8:471 [Internet]. 2019 May 17 [cited 2021 Sept 17];8(5):471. Available from: https://www.mdpi.com/2073-4409/8/5/471/htm.

  122. Wung BS, Ni CW, Wang DL. ICAM-1 induction by TNFα and IL-6 is mediated by distinct pathways via Rac in endothelial cells. J Biomed Sci 2005 121 [Internet]. 2005 Jan [cited 2021 Sept 17];12(1):91–101. Available from: https://doi.org/10.1007/s11373-004-8170-z.

  123. Kobayashi H, Boelte KC, Lin PC. Endothelial cell adhesion molecules and cancer progression. Curr Med Chem [Internet]. 2007 Apr 19 [cited 2021 Sept 17];14(4):327–40. Available from: https://pubmed.ncbi.nlm.nih.gov/17305540/.

  124. Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 2018 212 [Internet]. 2018 Dec 31 [cited 2022 Aug 28];21(2):190–202. Available from: https://www.nature.com/articles/s41556-018-0256-3.

  125. Wick N, Saharinen P, Saharinen J, Gurnhofer E, Steiner CW, Raab I, et al. Transcriptomal comparison of human dermal lymphatic endothelial cells ex vivo and in vitro. Internet. 2007 Jan 17 [cited 2021 Sept 17];28(2):179–92. Available from: https://doi.org/10.1152/physiolgenomics.00037.2006.

  126. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell [Internet]. 2007 June 12 [cited 2021 Sept 17];11(6):526–38. Available from: http://www.cell.com/article/S1535610807001456/fulltext.

  127. Förster R, Schubel A, Breitfeld D, Kremmer E, Renner-Müller I, Wolf E, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell [Internet]. 1999 Oct 1 [cited 2021 Sept 17];99(1):23–33. Available from: http://www.cell.com/article/S0092867400800598/fulltext.

  128. De Oliveira CEC, Oda JMM, LosiGuembarovski R, De Oliveira KB, Ariza CB, Neto JS, et al. CC chemokine receptor 5: the interface of host immunity and cancer. Dis Mark. 2014;2014:1.

    Article  Google Scholar 

  129. Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers. 2020;12:1765 (Internet). 2020 July 2 [cited 2021 Sept 17];12(7):1765. Available from: https://www.mdpi.com/2072-6694/12/7/1765/htm.

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzapour, M.H., Heidari-Foroozan, M., Razi, S. et al. The pro-tumorigenic responses in metastatic niches: an immunological perspective. Clin Transl Oncol 25, 333–344 (2023). https://doi.org/10.1007/s12094-022-02950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02950-4

Keywords

Navigation