Skip to main content

Advertisement

Log in

Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the value of multiparametric magnetic resonance imaging (MRI) in pretreatment prediction of breast cancers insensitive to neoadjuvant chemotherapy (NAC).

Methods

A total of 125 breast cancer patients (63 in the primary cohort and 62 in the validation cohort) who underwent MRI before receiving NAC were enrolled. All patients received surgical resection, and Miller–Payne grading system was applied to assess the response to NAC. Grade 1–2 cases were classified as insensitive to NAC. We extracted 1941 features in the primary cohort. After feature selection, the optimal feature set was used to construct a radiomic signature using machine learning. We built a combined prediction model incorporating the radiomic signature and independent clinical risk factors selected by multivariable logistic regression. The performance of the combined model was assessed with the results of independent validation.

Results

Four features were selected for the construction of the radiomic signature based on the primary cohort. Combining with independent clinical factors, the combined prediction model for identifying the Grade 1–2 group reached a better discrimination power than the radiomic signature, with an area under the receiver operating characteristic curve of 0.935 (95% confidence interval 0.848–1) in the validation cohort, and its clinical utility was confirmed by the decision curve analysis.

Conclusion

The combined model based on radiomics and clinical variables has potential in predicting drug-insensitive breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NAC:

Neoadjuvant chemotherapy

MRI:

Magnetic resonance imaging

HER2:

Human epidermal growth factor receptor-2

DCE:

Dynamic contrast enhanced

T2WI:

T2-weighted imaging

DWI:

Diffusion-weighted imaging

TR:

Repetition time

TE:

Echo time

FOV:

Field of view

ER:

Estrogen receptor

PR:

Progesterone receptor

ISH:

In situ hybridization

LASSO:

Least absolute shrinkage and selection operator

AUC:

Area under the receiver operating characteristic curve

ROC:

Receiver operating characteristic

GOF:

Goodness-of-fit

PPV:

Positive predictive value

NPV:

Negative predictive value

References

  1. Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W, et al. International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol. 2003;21(13):2600–8. https://doi.org/10.1200/jco.2003.01.136.

    Article  PubMed  Google Scholar 

  2. Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol. 2006;24(12):1940–9. https://doi.org/10.1200/jco.2005.02.6187.

    Article  PubMed  Google Scholar 

  3. Berruti A, Generali D, Kaufmann M, Puztai L, Curigliano G, Aglietta M, et al. International expert consensus on primary systemic therapy in the management of early breast cancer: highlights of the fourth symposium on primary systemic therapy in the management of operable breast cancer, Cremona, Italy (2010). J Natl Cancer Inst Monogr. 2011;2011(43):147–51. https://doi.org/10.1093/jncimonographs/lgr037.

    Article  PubMed  Google Scholar 

  4. Kaufmann M, von Minckwitz G, Bear HD, Buzdar A, McGale P, Bonnefoi H, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006. Ann Oncol. 2007;18(12):1927–34. https://doi.org/10.1093/annonc/mdm201.

    Article  CAS  PubMed  Google Scholar 

  5. Mamounas EP. Neoadjuvant chemotherapy for operable breast cancer: is this the future? Clin Breast Cancer. 2003;4(Suppl 1):S10–9.

    Article  Google Scholar 

  6. Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85. https://doi.org/10.1200/jco.2007.15.0235.

    Article  PubMed  Google Scholar 

  7. Iotti V, Ravaioli S, Vacondio R, Coriani C, Caffarri S, Sghedoni R, et al. Contrast-enhanced spectral mammography in neoadjuvant chemotherapy monitoring: a comparison with breast magnetic resonance imaging. Breast Cancer Res. 2017;19(1):106.

    Article  Google Scholar 

  8. Le-Petross H, Lim B. Role of MR Imaging in Neoadjuvant Therapy Monitoring. Magn Reson Imaging Clin N Am. 2018;26(2):207–20.

    Article  Google Scholar 

  9. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  Google Scholar 

  10. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast (Edinb). 2003;12(5):320–7.

    Article  Google Scholar 

  11. Untch M, Konecny GE, Paepke S, von Minckwitz G. Current and future role of neoadjuvant therapy for breast cancer. Breast (Edinb). 2014;23(5):526–37. https://doi.org/10.1016/j.breast.2014.06.004.

    Article  Google Scholar 

  12. Babyshkina N, Malinovskaya E, Patalyak S, Bragina O, Tarabanovskaya N, Doroshenko A, et al. Neoadjuvant chemotherapy for different molecular breast cancer subtypes: a retrospective study in Russian population. Med Oncol. 2014;31(9):165. https://doi.org/10.1007/s12032-014-0165-7.

    Article  CAS  PubMed  Google Scholar 

  13. Shen C, Liu Z, Guan M, Song J, Lian Y, Wang S, et al. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol. 2017;10(6):886–94. https://doi.org/10.1016/j.tranon.2017.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo J, Liu Z, Shen C, Li Z, Yan F, Tian J, et al. MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation. Eur Radiol. 2018;28(9):3872–3881. https://doi.org/10.1007/s00330-018-5381-7.

    Article  PubMed  Google Scholar 

  15. Liu Z, Wang Y, Liu X, Du Y, Tang Z, Wang K, et al. Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NeuroImage Clin. 2018;19:271–8. https://doi.org/10.1016/j.nicl.2018.04.024.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J Clin Oncol. 2016;34(18):2157–64. https://doi.org/10.1200/jco.2015.65.9128.

    Article  PubMed  Google Scholar 

  17. Shen C, Liu Z, Wang Z, Guo J, Zhang H, Wang Y, et al. Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction. Transl Oncol. 2018;11(3):815–24. https://doi.org/10.1016/j.tranon.2018.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, Tang Z, et al. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Clin Cancer Res. 2017;23(23):7253–62. https://doi.org/10.1158/1078-0432.ccr-17-1038.

    Article  CAS  PubMed  Google Scholar 

  19. Chamming’s F, Ueno Y, Ferre R, Kao E, Jannot AS, Chong J, et al. Features from computerized texture analysis of breast cancers at pretreatment mr imaging are associated with response to neoadjuvant chemotherapy. Radiology. 2018;286(2):412–20. https://doi.org/10.1148/radiol.2017170143.

    Article  PubMed  Google Scholar 

  20. Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res BCR. 2017;19(1):57. https://doi.org/10.1186/s13058-017-0846-1.

    Article  CAS  PubMed  Google Scholar 

  21. Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM. The rise of radiomics and implications for oncologic management. J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djx055.

    Article  PubMed  Google Scholar 

  22. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62. https://doi.org/10.1038/nrclinonc.2017.141.

    Article  PubMed  Google Scholar 

  23. Fujii T, Kogawa T, Dong W, Sahin AA, Moulder S, Litton JK, et al. Revisiting the definition of estrogen receptor positivity in HER2-negative primary breast cancer. Ann Oncol. 2017;28(10):2420–8. https://doi.org/10.1093/annonc/mdx397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Omarini C, Guaitoli G, Noventa S, Andreotti A, Gambini A, Palma E, et al. Impact of time to surgery after neoadjuvant chemotherapy in operable breast cancer patients. Eur J Surg Oncol. 2017;43(4):613–8. https://doi.org/10.1016/j.ejso.2016.09.020.

    Article  CAS  PubMed  Google Scholar 

  25. Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.

    Article  Google Scholar 

  26. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008;8:53. https://doi.org/10.1186/1472-6947-8-53.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  CAS  Google Scholar 

  28. Zhu Q, Tannenbaum S, Kurtzman SH, DeFusco P, Ricci A Jr, Vavadi H, et al. Identifying an early treatment window for predicting breast cancer response to neoadjuvant chemotherapy using immunohistopathology and hemoglobin parameters. Breast Cancer Res BCR. 2018;20(1):56. https://doi.org/10.1186/s13058-018-0975-1.

    Article  CAS  PubMed  Google Scholar 

  29. Liu YH, Ye JM, Xu L, Huang QY, Zhao JX, Duan XN, et al. Effectiveness of dynamic contrast-enhanced magnetic resonance imaging in evaluating clinical responses to neoadjuvant chemotherapy in breast cancer. Chin Med J. 2011;124(2):194–8.

    PubMed  Google Scholar 

  30. Chen S, Liu Y, Ouyang QW, Huang L, Luo RC, Shao ZM. Clinical and pathological response to neoadjuvant chemotherapy based on primary tumor reduction is correlated to survival in hormone receptor-positive but not hormone receptor-negative locally advanced breast cancer. Ann Surg Oncol. 2015;22(1):32–9. https://doi.org/10.1245/s10434-014-3894-0.

    Article  PubMed  Google Scholar 

  31. von Minckwitz G, Untch M, Nüesch E, Loibl S, Kaufmann M, Kümmel S, et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat. 2011;125(1):145–56.

    Article  Google Scholar 

  32. Lips EH, Mulder L, de Ronde JJ, Mandjes IA, Koolen BB, Wessels LF, et al. Breast cancer subtyping by immunohistochemistry and histological grade outperforms breast cancer intrinsic subtypes in predicting neoadjuvant chemotherapy response. Breast Cancer Res Treat. 2013;140(1):63–71. https://doi.org/10.1007/s10549-013-2620-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu T, Liu CL, Zhang YF, Liu YH, Xu FP, Zu J, et al. A phase II trial of dose-dense (biweekly) paclitaxel plus carboplatin as neoadjuvant chemotherapy for operable breast cancer. Breast Cancer Res Treat. 2016;156(1):117–24. https://doi.org/10.1007/s10549-016-3735-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients for their participation and their physicians for their remarkable efforts. This study was funded by the National Key R&D Program of China [Grant No.: 2017YFC1309100]; Natural Science Foundation of Guangdong Province, China [grant numbers: 2017A030313882]; National Natural Science Foundation of China [Grant Nos.: 81871513, 81772012, 81501549]; the Beijing Natural Science Foundation [Grant No.: 7182109]; Science and Technology Planning Project of Guangdong Province [Grant No.: 2017B020227012]; and CSC0-constant Rui Tumor Research Fund, China [Grant No.: Y-HR2016-067].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Tian or Kun Wang.

Ethics declarations

Conflict of interest

We declare that none of the authors have any conflict of interest.

Ethical approval

All procedures performed in this study, which involved human participants, were in accordance with the ethical standards of the institutional and/or nation research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Q., Zhou, X., Liu, Z. et al. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy. Clin Transl Oncol 22, 50–59 (2020). https://doi.org/10.1007/s12094-019-02109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02109-8

Keywords

Navigation