Skip to main content

Advertisement

Log in

Time for radioimmunotherapy: an overview to bring improvements in clinical practice

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Harnessing the patient’s own immune system against an established cancer has proven to be a successful strategy. Within the last years, several antibodies blocking critical “checkpoints” that control the activation of T cells, the immune cells able to kill cancer cells, have been approved for the use in patients with different tumours. Unfortunately, these cases remain a minority. Over the last years, radiotherapy has been reported as a means to turn a patient’s own tumour into an in situ vaccine and generate anti-tumour T cells in patients who lack sufficient anti-tumour immunity. Indeed, review data show that the strategy of blocking multiple selected immune inhibitory targets in combination with radiotherapy has the potential to unleash powerful anti-tumour responses and improve the outcome of metastatic solid tumours. Here, we review the principal tumours where research in this field has led to new knowledge and where radioimmunotherapy becomes a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Introduction References

  1. Finn OJ. Cancer immunology. N Engl J Med. 2008;358(25):2704–15.

    Article  CAS  Google Scholar 

  2. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article  CAS  Google Scholar 

  3. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol. 2011;29(36):4828–36.

    Article  CAS  Google Scholar 

  4. Kfoury M, Disdero V, Vicier C, Le Saux O, Gougis P, Sajous C, et al. Immune checkpoints inhibitors: recent data from ASCO’s meeting 2017 and perspectives. Bull Cancer. 2018;105(7–8):686–95.

    Article  Google Scholar 

  5. Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd. 1909;5:273–90.

    Google Scholar 

  6. Mole RH. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953;26(305):234–41.

    Article  CAS  Google Scholar 

  7. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  Google Scholar 

  8. Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1(9):1325–32.

    Article  Google Scholar 

  9. Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, García-Martínez E, et al. Barriers to radiation-induced in situ tumor vaccination. Front Immunol. 2017;8:229.

    Article  Google Scholar 

Lymphoma References

  1. Bröckelmann PJ, Borchmann P, Engert A. Current and future immunotherapeutic approaches in Hodgkin Lymphoma. Leukemia Lymphoma. 2016;57(9):2014–24.

    Article  Google Scholar 

  2. Barth MJ, Chu Y, Hanley PJ, et al. Immunotherapeutic approaches for the treatment of childhood, adolescent and Young adult non-Hodgkin Lymphoma. Br J Haematol. 2016;173:597–616.

    Article  Google Scholar 

  3. Brody JD, Ai WZ, Czerwinski DK, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010;28(28):4324–32.

    Article  Google Scholar 

  4. Michot JM, Mazeron R, Dercle L, et al. Abscopal effect in a Hodgkin lymphoma patient treated by anti-programmed death 1 antibody. Eur J Can. 2016;66:91–4.

    Article  Google Scholar 

  5. Qin Q, Nan X, Miller T, Fisher R, Teh B, et al. Complete local and abscopal responses from a combination of radiation and Nivolumab in refractory Hodgkin’s Lymphoma. Radiat Res. 2018;190(3):322–9.

    Article  CAS  Google Scholar 

  6. Li J, Song W, Czerwinski DK, Varghese B, et al. Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol. 2007;179:2493–500.

    Article  CAS  Google Scholar 

  7. Dovedi SJ, Melis MH, Wilkinson RW, Adlard AL, Stratford IJ, et al. Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood. 2013;121(2):251–9.

    Article  CAS  Google Scholar 

  8. Lu H, Ford E, Schwartz JL, Hewitt J, Hsu FJ, et al. Intratumoral G100 rescues radiation-induced T cell depletion and has synergistic anti-tumor effect with local irradiation in A20 lymphoma. Blood. 2016;128:4166.

    Google Scholar 

  9. Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumour immunity in mice. J Clin Invest. 2014;124:687–95.

    Article  CAS  Google Scholar 

Lung References

  1. Bremnes RM, Busund LT, Kilvær TL, et al. The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer. J Thorac Oncol. 2016;11:789–800.

    Article  Google Scholar 

  2. Brambilla E, Le Teuff G, Marguet S, et al. Prognostic effect of tumor lymphocytic infiltration in resectable non-small-cell lung cancer. J Clin Oncol. 2016;34:1223–30.

    Article  CAS  Google Scholar 

  3. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  Google Scholar 

  4. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–12.

    Article  CAS  Google Scholar 

  5. Villanueva N, Bazhenova L. New strategies in immunotherapy for lung cancer: beyond PD-1/PD-L1. Ther Adv Respir Dis. 2018;12:1753466618794133.

    Article  Google Scholar 

  6. Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18(7):895–903.

    Article  CAS  Google Scholar 

  7. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16(7):795–803.

    Article  CAS  Google Scholar 

  8. von Reibnitz D, Chaft JE, Wu AJ, Samstein R, Hellmann MD, Plodkowski AJ, et al. Safety of combining thoracic radiation therapy with concurrent versus sequential immune checkpoint inhibition. Adv Radiat Oncol. 2018;3(3):391–8.

    Article  Google Scholar 

  9. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res. 2013;1(6):365–72.

    Article  Google Scholar 

  10. Tang C, Welsh JW, de Groot P, et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23:1388–96. https://doi.org/10.1158/1078-0432.CCR-16-1432.

    Article  CAS  PubMed  Google Scholar 

  11. Van den Heuvel MM, Verheij M, Boshuizen R, Belderbos J, Dingemans AM, De Ruysscher D, et al. NHS-IL2 combined with radiotherapy: preclinical rationale and phase Ib trial results in metastatic non-small cell lung cancer following first-line chemotherapy. J Transl Med. 2015;27(13):32.

    Article  Google Scholar 

  12. SJ Antonia, A. Villegas, D. Daniel, D. Vicente, S. Murakami, R. Hui et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC.

  13. Hao Y, Yasmin-Karim S, Moreau M, Sinha N, Sajo E, Ngwa W. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study. Phys Med Biol. 2016;61(24):N697–707.

    Article  CAS  Google Scholar 

  14. Flynn JP, O’Hara MH, Gandhi SJ. Preclinical rationale for combining radiation therapy and immunotherapy beyond checkpoint inhibitors (i.e., CART). Transl Lung Cancer Res. 2017;6(2):159–68.

    Article  CAS  Google Scholar 

  15. Zhang H, Liu L, Yu D, Kandimalla ER, Sun HB, Agrawal S, Guha C. An in situ autologous tumor vaccination with combined radiation therapy and TLR9 agonist therapy. PLoS ONE. 2012;7(5):e38111.

    Article  CAS  Google Scholar 

Renal References

  1. Porta C, Chiellino S, Ferrari A, Mariucci S, Liguigli W, et al. Pharmacotherapy for treating metastatic clear cell renal cell carcinoma. Expert Opin Pharmacother. 2017;18(2):205–16.

    Article  CAS  Google Scholar 

  2. Beaumont JL, Salsman JM, Diaz J, Deen KC, McCann L, Powles T, et al. Quality-adjusted time without symptoms or toxicity analysis of pazopanib versus sunitinib in patients with renal cell carcinoma. Cancer. 2016;122(7):1108–15.

    Article  CAS  Google Scholar 

  3. MacManus MP, Harte RJ, Stranex S. Spontaneous regression of metastatic renal cell carcinoma following palliative irradiation of the primary tumour. Ir J Med Sci. 1994;163(10):461–3.

    Article  CAS  Google Scholar 

  4. Ishiyama H, Teh BS, Ren H, Chiang S, Tann A, Blanco AI, Paulino AC, Amato R, et al. Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier? Clin Genitourin Cancer. 2012;10(3):196–8.

    Article  Google Scholar 

  5. Buttigliero C, Allis S, Tucci M, Zichi C, Leone G, Di Stefano RF, et al. Role of radiotherapy in improving activity of immune-modulating drugs in advanced renal cancer: biological rationale and clinical evidences. Cancer Treat Rev. 2018;69:215–23.

    Article  CAS  Google Scholar 

  6. Ridolfi L, de Rosa F, Ridolfi R, Gentili G, Valmorri L, Scarpi E, et al. Radiotherapy as an immunological booster in patients with metastatic melanoma or renal cell carcinoma treated with high-dose Interleukin-2: evaluation of biomarkers of immunologic and therapeutic response. J Transl Med. 2014;23(12):262.

    Article  Google Scholar 

  7. Seung SK, Curti BD, Crittenden M, Walker E, Coffey T, Siebert JC, et al. Phase 1 study of stereotactic body radiotherapy and interleukin-2—tumor and immunological responses. Sci Transl Med. 2012;4(137):137ra74.

    Article  Google Scholar 

  8. Merriman J, Tward J, Albertson D, Dechet C, Agarwal N, et al. Durable response to treatment with combination radiotherapy and high-dose interleukin-2 in metastatic chromophobe variant renal cell carcinoma. J Immunother. 2016;39(2):101–3.

    Article  CAS  Google Scholar 

  9. Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams MP, et al. PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res. 2015;3(6):610–9.

    Article  CAS  Google Scholar 

Head and Neck References

  1. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34.

    Article  CAS  Google Scholar 

  2. Ock CY, Keam B, Kim S, Lee JS, Kim M, Kim TM, et al. Pan-cancer immunogenomic perspective on the tumor microenvironment based on PD-L1 and CD8 T-cell infiltration. Clin Cancer Res. 2016;22(9):2261–70.

    Article  CAS  Google Scholar 

  3. Economopoulou F, Agelaki S, et al. The promise of immunotherapy in head and neck squamous cell carcinoma. Ann Oncol. 2016;27(9):1675–85.

    Article  CAS  Google Scholar 

  4. Mandal R, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016;1(17):e89829.

    Article  Google Scholar 

  5. Chan KK, Glenny AM, Weldon JC, Furness S, Worthington HV, Wakeford H. Interventions for the treatment of oral and oropharyngeal cancers: targeted therapy and immunotherapy. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.cd010341.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kono Koji, Mimura Kousaku. Immunogenic tumor cell death induced by chemoradiotherapy in a clinical setting. Oncoimmunology. 2013;2(1):e22197.

    Article  Google Scholar 

Melanoma References

  1. Turajlic S, Gore M, Larkin J. First report of overall survival for ipilimumab plus nivolumab from the phase III Checkmate 067 study in advanced melanoma. Ann Oncol. 2018;29(3):542–3.

    Article  CAS  Google Scholar 

  2. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.

    Article  CAS  Google Scholar 

  3. Stamell EF, Wolchok JD, Gnjatic Sacha, Lee NY, Brownell I. The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys. 2013;85(2):293–5.

    Article  Google Scholar 

  4. Knisely JP, Yu JB, Flanigan J, Sznol M, Kluger HM, Chiang VL. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012;117(2):227–33.

    Article  Google Scholar 

  5. Silk AW, Bassetti MF, West BT, Tsien CI, Lao CD. Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med. 2013;2(6):899–906.

    Article  CAS  Google Scholar 

  6. Kiess AP, Wolchok JD, Barker CA, Postow MA, Tabar V, Huse JT, et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys. 2015;92(2):368–75.

    Article  Google Scholar 

  7. Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology. 2014;14(3):e28780.

    Article  Google Scholar 

  8. Ahmed KA, Stallworth DG, Kim Y, Johnstone PA, Harrison LB, Caudell JJ, et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol. 2016;27(3):434–41.

    Article  CAS  Google Scholar 

  9. Park SS, Dong H, Liu X, et al. PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res. 2015;3:610–9.

    Article  CAS  Google Scholar 

  10. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–23.

    Article  CAS  Google Scholar 

  11. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activates non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7.

    Article  CAS  Google Scholar 

  12. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306–10.

    Article  CAS  Google Scholar 

  13. Lee S, Son B, Park G, Kim H, Kang H, Jeon J, et al. The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia. Int J Mol Sci. 2018;19(9):2795.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Leaman Alcibar.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethical approval

This review article did not imply research involving humans or animals.

Informed consent

Informed consent was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leaman Alcibar, O., Candini, D., López-Campos, F. et al. Time for radioimmunotherapy: an overview to bring improvements in clinical practice. Clin Transl Oncol 21, 992–1004 (2019). https://doi.org/10.1007/s12094-018-02027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-018-02027-1

Keywords

Navigation