Skip to main content

Advertisement

Log in

The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Pancreatic cancer is one of the most deadly cancers, with dismal prognosis due to its poor early detection rate and high metastatic rate. Thus, elucidation of the molecular mechanisms accounting for its metastasis and discovery of competent biomarkers is required. Exosomes are multivesicular body-derived small extracellular vesicles released by various cell types that serve as important message carriers during intercellular communication. They are also known to play critical roles during cancer-genesis, cancer-related immune reactions, and metastasis. They also possess promising potential as novel biomarkers for cancer early detection. Therefore, extensive studies on pancreatic cancer-derived exosomes are currently being performed because they hold the promising potential of elevating the overall survival rate of patients with pancreatic cancer. In the present review, we focus on the role of exosomes in pancreatic cancer-related immune reactions, metastasis, and complications, and on their potential application as pancreatic cancer biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

BM:

Bone marrow

CAFs:

Cancer-associated fibroblasts

crExos:

Circulating exosomes

CP:

Chronic pancreatitis

CSC:

Cancer stem cell

DCs:

Dendritic cells

ESCRT:

Endosomal sorting complex required for transport

EMT:

Epithelial mesenchymal transition

exoDNA:

Exosomal DNA

exoRNA:

Exosomal RNA

EVs:

Extracellular vesicles

FACS:

Fluorescence-activated cell sorting

GPC1:

Glypican-1

ISEV:

International Society for Extracellular Vesicles

ILVs:

Intraluminal vesicles

LSPR:

Localized surface plasmon resonance

MIF:

Macrophage migration inhibitory factor

MVB:

Multivesicular body

NK cells:

Nature-killing cells

PaCa:

Pancreatic cancer

PDAC:

Pancreatic ductal adenocarcinomas

PMs:

Plasma membranes

PEG:

Polyethylene glycol

PKM:

Pyruvate kinase

SNARE:

Soluble N-ethylmaleimide-sensitive fusion attachment protein receptors

SAW:

Surface acoustic wave

TGF-β:

Transforming growth factor β

TEM:

Transmission electron microscopy

UC:

Ultracentrifugation

References

  1. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26. doi:10.1038/ncb3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23. doi:10.1016/j.stem.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  3. Li CW, Heidt DG, Dalerba P, Burant CF, Zhang LJ, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. doi:10.1158/0008-5472.CAN-06-2030.

    Article  CAS  PubMed  Google Scholar 

  4. Lonardo E, Hermann PC, Heeschen C. Pancreatic cancer stem cells—update and future perspectives. Mol Oncol. 2010;4(5):431–42. doi:10.1016/j.molonc.2010.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Rana S, Giese N, Buchler MW, Zoller M. Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int J Cancer. 2013;133(2):416–26. doi:10.1002/ijc.28044.

    Article  CAS  PubMed  Google Scholar 

  6. Madhavan B, Yue S, Galli U, Rana S, Gross W, Muller M, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015;136(11):2616–27. doi:10.1002/ijc.29324.

    Article  CAS  PubMed  Google Scholar 

  7. Heiler S, Wang Z, Zoller M. Pancreatic cancer stem cell markers and exosomes—the incentive push. World J Gastroenterol. 2016;22(26):5971–6007. doi:10.3748/wjg.v22.i26.5971.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32. doi:10.1016/j.cell.2016.01.043.

    Article  CAS  PubMed  Google Scholar 

  9. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93. doi:10.1038/nri2567.

    Article  CAS  PubMed  Google Scholar 

  10. Chaput N, Thery C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33(5):419–40. doi:10.1007/s00281-010-0233-9.

    Article  CAS  PubMed  Google Scholar 

  11. Rak J. Extracellular vesicles—biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol. 2013;4:21. doi:10.3389/fphar.2013.00021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. doi:10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  13. Bobrie A, Colombo M, Raposo G, Thery C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–68. doi:10.1111/j.1600-0854.2011.01225.x.

    Article  CAS  PubMed  Google Scholar 

  14. Marques-Garcia F, Isidoro-Garcia M. Protocols for exosome isolation and RNA profiling. Methods Mol Biol. 2016;1434:153–67. doi:10.1007/978-1-4939-3652-6_11.

    Article  CAS  PubMed  Google Scholar 

  15. Min L, Shen J, Tu C, Hornicek F, Duan Z. The roles and implications of exosomes in sarcoma. Cancer Metastasis Rev. 2016;. doi:10.1007/s10555-016-9630-4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Greening DW, Gopal SK, Mathias RA, Liu L, Sheng J, Zhu HJ, et al. Emerging roles of exosomes during epithelial–mesenchymal transition and cancer progression. Semin Cell Dev Biol. 2015;40:60–71. doi:10.1016/j.semcdb.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  17. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release. 2015;219:278–94. doi:10.1016/j.jconrel.2015.06.029.

    Article  CAS  PubMed  Google Scholar 

  18. An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4:27522. doi:10.3402/jev.v4.27522.

    Article  CAS  PubMed  Google Scholar 

  19. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. doi:10.3402/jev.v3.26913.

    Article  PubMed  Google Scholar 

  20. Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials—an ISEV position paper. J Extracell Vesicles. 2015;4:30087. doi:10.3402/jev.v4.30087.

    Article  CAS  PubMed  Google Scholar 

  21. Cheung KH, Keerthikumar S, Roncaglia P, Subramanian SL, Roth ME, Samuel M, et al. Extending gene ontology in the context of extracellular RNA and vesicle communication. J Biomed Semant. 2016;7:19. doi:10.1186/s13326-016-0061-5.

    Article  Google Scholar 

  22. Dreyer F, Baur A. Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol. 2016;1448:201–16. doi:10.1007/978-1-4939-3753-0_15.

    Article  CAS  PubMed  Google Scholar 

  23. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. doi:10.1146/annurev-cellbio-101512-122326.

    Article  CAS  PubMed  Google Scholar 

  24. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2. doi:10.3402/jev.v2i0.20360.

    Article  Google Scholar 

  25. Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25. doi:10.1016/j.ceb.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  26. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–9. doi:10.1038/cr.2014.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hill AF, Pegtel DM, Lambertz U, Leonardi T, O’Driscoll L, Pluchino S, et al. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J Extracell Vesicles. 2013;2. doi:10.3402/jev.v2i0.22859.

    Article  Google Scholar 

  28. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113(8):E968–77. doi:10.1073/pnas.1521230113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: determining the correct approach (Review). Int J Mol Med. 2015;36(1):11–7. doi:10.3892/ijmm.2015.2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nolte-’t Hoen E, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci USA. 2016;. doi:10.1073/pnas.1605146113.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30; sup pp 1–13. doi:10.1038/ncb2000.

    Article  PubMed  Google Scholar 

  32. Segura E, Nicco C, Lombard B, Veron P, Raposo G, Batteux F, et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood. 2005;106(1):216–23. doi:10.1182/blood-2005-01-0220.

    Article  CAS  PubMed  Google Scholar 

  33. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104(10):3257–66. doi:10.1182/blood-2004-03-0824.

    Article  CAS  PubMed  Google Scholar 

  34. Zeelenberg IS, van Maren WW, Boissonnas A, Van Hout-Kuijer MA, Den Brok MH, Wagenaars JA, et al. Antigen localization controls T cell-mediated tumor immunity. J Immunol. 2011;187(3):1281–8. doi:10.4049/jimmunol.1003905.

    Article  CAS  PubMed  Google Scholar 

  35. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303. doi:10.1038/85438.

    Article  CAS  PubMed  Google Scholar 

  36. Zech D, Rana S, Buchler MW, Zoller M. Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Commun Signal. 2012;10(1):37. doi:10.1186/1478-811X-10-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6:20254. doi:10.1038/srep20254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest. 2016;126(4):1216–23. doi:10.1172/JCI81136.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol. 2011;21(2):139–46. doi:10.1016/j.semcancer.2011.01.002.

    Article  CAS  PubMed  Google Scholar 

  40. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91. doi:10.1038/nm.2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35. doi:10.1038/nature15756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rana S, Malinowska K, Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 2013;15(3):281–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rana S, Yue S, Stadel D, Zoller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012;44(9):1574–84. doi:10.1016/j.biocel.2012.06.018.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527(7576):100–4. doi:10.1038/nature15376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70(4):1668–78. doi:10.1158/0008-5472.CAN-09-2470.

    Article  CAS  PubMed  Google Scholar 

  46. Yoon YJ, Kim DK, Yoon CM, Park J, Kim YK, Roh TY, et al. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One. 2014;9(12):e115170. doi:10.1371/journal.pone.0115170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim J, Morley S, Le M, Bedoret D, Umetsu DT, Di Vizio D, et al. Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells: potential effects on the tumor microenvironment. Cancer Biol Ther. 2014;15(4):409–18. doi:10.4161/cbt.27627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10(5):619–24. doi:10.1038/ncb1725.

    Article  CAS  PubMed  Google Scholar 

  49. Luga V, Wrana JL. Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res. 2013;73(23):6843–7. doi:10.1158/0008-5472.CAN-13-1791.

    Article  CAS  PubMed  Google Scholar 

  50. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716. doi:10.1038/ncomms7716.

    Article  CAS  PubMed  Google Scholar 

  51. Hood JL, Pan H, Lanza GM, Wickline SA. Consortium for translational research in advanced I, nanomedicine. Paracrine induction of endothelium by tumor exosomes. Lab Investig. 2009;89(11):1317–28. doi:10.1038/labinvest.2009.94.

    Article  PubMed  Google Scholar 

  52. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15. doi:10.1016/j.ccr.2014.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA. 2009;106(10):3794–9. doi:10.1073/pnas.0804543106.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17(2):183–94. doi:10.1038/ncb3094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, et al. KRAS-dependent sorting of miRNA to exosomes. eLife. 2015;4:e07197. doi:10.7554/eLife.07197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Z, von Au A, Schnolzer M, Hackert T, Zoller M. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression. Oncotarget. 2016;. doi:10.18632/oncotarget.10580.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lugini L, Valtieri M, Federici C, Cecchetti S, Meschini S, Condello M, et al. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget. 2016;. doi:10.18632/oncotarget.10574.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R, Beerling E, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046–57. doi:10.1016/j.cell.2015.04.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2016;. doi:10.1038/onc.2016.353.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Leca J, Martinez S, Lac S, Nigri J, Secq V, Rubis M, et al. Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Investig. 2016;. doi:10.1172/JCI87734.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Javeed N, Sagar G, Dutta SK, Smyrk TC, Lau JS, Bhattacharya S, et al. Pancreatic cancer-derived exosomes cause paraneoplastic beta-cell dysfunction. Clin Cancer Res. 2015;21(7):1722–33. doi:10.1158/1078-0432.CCR-14-2022.

    Article  CAS  PubMed  Google Scholar 

  62. Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, et al. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 2016;65(7):1165–74. doi:10.1136/gutjnl-2014-308350.

    Article  CAS  PubMed  Google Scholar 

  63. Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93. doi:10.1016/j.molmed.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5(4):e1071008. doi:10.1080/2162402X.2015.1071008.

    Article  CAS  PubMed  Google Scholar 

  65. Ohno S, Kuroda M. Exosome-mediated targeted delivery of miRNAs. Methods Mol Biol. 2016;1448:261–70. doi:10.1007/978-1-4939-3753-0_19.

    Article  CAS  PubMed  Google Scholar 

  66. Erb U, Zoller M. Progress and potential of exosome analysis for early pancreatic cancer detection. Expert Rev Mol Diagn. 2016;16(7):757–67. doi:10.1080/14737159.2016.1187563.

    Article  CAS  PubMed  Google Scholar 

  67. Patel GK, Patton MC, Singh S, Khushman M, Singh AP. Pancreatic cancer exosomes: shedding off for a meaningful journey. Pancreat Disord Therapy. 2016;6(2):e148. doi:10.4172/2165-7092.1000e148.

    Article  Google Scholar 

  68. Lu L, Risch HA. Exosomes: potential for early detection in pancreatic cancer. Future Oncol. 2016;12(8):1081–90. doi:10.2217/fon-2015-0005.

    Article  CAS  PubMed  Google Scholar 

  69. Babic A, Wolpin BM. Circulating exosomes in pancreatic cancer: will they succeed on the long, littered road to early detection marker? Clin Chem. 2016;62(2):307–9. doi:10.1373/clinchem.2015.246538.

    Article  CAS  PubMed  Google Scholar 

  70. Torrano V, Royo F, Peinado H, Loizaga-Iriarte A, Unda M, Falcon-Perez JM, et al. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr Opin Pharmacol. 2016;29:47–53. doi:10.1016/j.coph.2016.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82. doi:10.1038/nature14581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thery C. Cancer: diagnosis by extracellular vesicles. Nature. 2015;523(7559):161–2. doi:10.1038/nature14626.

    Article  CAS  PubMed  Google Scholar 

  73. Que R, Ding G, Chen J, Cao L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013;11:219. doi:10.1186/1477-7819-11-219.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Taller D, Richards K, Slouka Z, Senapati S, Hill R, Go DB, et al. On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis. Lab Chip. 2015;15(7):1656–66. doi:10.1039/c5lc00036j.

    Article  CAS  PubMed  Google Scholar 

  75. Joshi GK, Deitz-McElyea S, Liyanage T, Lawrence K, Mali S, Sardar R, et al. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of MicroRNA-10b in biological fluids and circulating exosomes. ACS Nano. 2015;9(11):11075–89. doi:10.1021/acsnano.5b04527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. San Lucas FA, Allenson K, Bernard V, Castillo J, Kim DU, Ellis K, et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol. 2016;27(4):635–41. doi:10.1093/annonc/mdv604.

    Article  CAS  PubMed  Google Scholar 

  77. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288(37):26888–97. doi:10.1074/jbc.M113.452458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90 + liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155. doi:10.1186/s12943-015-0426-x.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wunsch BH, Smith JT, Gifford SM, Wang C, Brink M, Bruce RL, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol. 2016;11(11):936–40. doi:10.1038/nnano.2016.134.

    Article  CAS  PubMed  Google Scholar 

  80. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012;56(2):293–304. doi:10.1016/j.ymeth.2012.01.002.

    Article  CAS  PubMed  Google Scholar 

  81. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protocols Cell Biol. 2006;Chapter 3:Unit 3 22. doi:10.1002/0471143030.cb0322s30.

    Article  Google Scholar 

  82. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3. doi:10.3402/jev.v3.24858.

    Article  Google Scholar 

  83. Paolini L, Zendrini A, Di Noto G, Busatto S, Lottini E, Radeghieri A, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016;6:23550. doi:10.1038/srep23550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031. doi:10.3402/jev.v4.27031.

    Article  PubMed  Google Scholar 

  85. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32. doi:10.1038/ki.2012.256.

    Article  CAS  PubMed  Google Scholar 

  86. Weng Y, Sui Z, Shan Y, Hu Y, Chen Y, Zhang L, et al. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst. 2016;. doi:10.1039/c6an00892e.

    Article  PubMed  Google Scholar 

  87. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13(22):3354–64. doi:10.1002/pmic.201300282.

    Article  CAS  PubMed  Google Scholar 

  88. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014;14(11):1891–900. doi:10.1039/c4lc00136b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10(4):505–11. doi:10.1039/b916199f.

    Article  CAS  PubMed  Google Scholar 

  90. He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014;14(19):3773–80. doi:10.1039/c4lc00662c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3. doi:10.3402/jev.v3.23430.

    Article  Google Scholar 

  92. Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6(30):29877–88. doi:10.18632/oncotarget.4924.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292(1–2):65–9. doi:10.1016/j.cellimm.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  94. Que RS, Lin C, Ding GP, Wu ZR, Cao LP. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J Zhejiang Univ Sci B. 2016;17(5):352–60. doi:10.1631/jzus.B1500305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Tan.

Ethics declarations

This study was funded by the Outstanding Scientific Fund of Shengjing Hospital (grant number M731).

Conflict of interest

The authors have no potential conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Wu, Y. & Tan, X. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers. Clin Transl Oncol 19, 921–930 (2017). https://doi.org/10.1007/s12094-017-1625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1625-2

Keywords

Navigation