Skip to main content

Advertisement

Log in

Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The use of preclinical models is essential in translational cancer research and especially important in pediatric cancer given the low incidence of each particular type of cancer. Cell line cultures have led to significant advances in cancer biology. However, cell lines have adapted to growth in artificial culture conditions, thereby undergoing genetic and phenotypic changes which may hinder the translational application. Tumor grafts developed in mice from patient tumor tissues, generally known as patient-derived xenografts (PDXs), are interesting alternative approaches to reproducing the biology of the original tumor. This review is focused on highlighting the interest of PDX models in pediatric cancer research and supporting strategies of personalized medicine. This review provides: (1) a description of the background of PDX in cancer, (2) the particular case of PDX in pediatric cancer, (3) how PDX can improve personalized medicine strategies, (4) new methods to increase engraftment, and, finally, (5) concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Venditti JM, Wesley RA, Plowman J. Current NCI preclinical antitumor screening in vivo: results of tumor panel screening, 1976–1982, and future directions. Adv Pharmacol Chemother. 1984;20:1–20.

    Article  CAS  PubMed  Google Scholar 

  2. Boyd MR. The NCI in vitro antitumor drug discovery screen: concept, implementation, and operation, 1985–1995. In: Teicher BA, editor. Anticancer drug development guide. Totowa: Humana; 1997. p. 23–42.

    Chapter  Google Scholar 

  3. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69:3364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumor xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc. 2009;4(11):1670–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther. 2011;10(8):1311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blattmann C, Thiemann M, Stenzinger A, Roth EK, Dittmar A, Witt H, et al. Establishment of a patient-derived orthotopic osteosarcoma mouse model. J Transl Med. 2015;13:136.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Monsma DJ, Monks NR, Cherba DM, Dylewski D, Eugster E, Jahn H, et al. Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. J Transl Med. 2012;10:125.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shorthouse AJ, Peckham MJ, Smyth JF, Steel GG. The therapeutic response of bronchial carcinoma xenografts: a direct patient-xenograft comparison. Br J Cancer Suppl. 1980;4:142–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujita M, Hayata S, Taguchi T. Relationship of chemotherapy on human cancer xenografts in nude mice to clinical response in donor patient. J Surg Oncol. 1980;15(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  11. Houghton JA, Houghton PJ, Green AA. Chemotherapy of childhood rhabdomyosarcomas growing as xenografts in immune-deprived mice. Cancer Res. 1982;42:535–9.

    CAS  PubMed  Google Scholar 

  12. Fiebig HH, Neumann HA, Henss H, Koch H, Kaiser D, Arnold H. Development of three human small cell lung cancer models in nude mice. Recent Results Cancer Res. 1985;97:77–86.

    Article  CAS  PubMed  Google Scholar 

  13. Vidal A, Muñoz C, Guillén MJ, Moretó J, Puertas S, Martínez-Iniesta M, et al. Lurbinectedin (PM01183), a new DNA minor groove binder, inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer. Clin Cancer Res. 2012;18(19):5399–411.

    Article  CAS  PubMed  Google Scholar 

  14. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84:1424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zayed AA, Mandrekar SJ, Haluska P. Molecular and clinical implementations of ovarian cancer mouse avatar models. Chin Clin Oncol. 2015;4(3):30.

    PubMed  PubMed Central  Google Scholar 

  17. Juliachs M, Muñoz C, Moutinho CA, Vidal A, Condom E, Esteller M, et al. The PDGFRβ-AKT pathway contributes to CDDP-acquired resistance in testicular germ cell tumors. Clin Cancer Res. 2014;20(3):658–67.

    Article  CAS  PubMed  Google Scholar 

  18. Ambrogio C, Gómez-López G, Falcone M, Vidal A, Nadal E, Crosetto N, et al. Combined inhibition of Ddr1 and notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat Med. 2016;22(3):270–7.

    Article  CAS  PubMed  Google Scholar 

  19. Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170:793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther. 2009;85:217–21.

    Article  CAS  PubMed  Google Scholar 

  21. Bergamaschi A, Hjortland GO, Triulzi T, Sørlie T, Johnsen H, Ree AH, et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol. 2009;3(5–6):469–82.

    Article  CAS  PubMed  Google Scholar 

  22. Braekeveldt N, Wigerup C, Gisselsson D, Mohlin S, Merselius M, Beckman S, et al. Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. Int J Cancer. 2015;136(5):E252–61.

    Article  CAS  PubMed  Google Scholar 

  23. Grovas A, Fremgen A, Rauck A, Ruymann FB, Hutchinson CL, Winchester DP, et al. The national cancer data base report on patterns of childhood cancers in the United States. Cancer. 1997;80(12):2321–32.

    Article  CAS  PubMed  Google Scholar 

  24. Houghton PJ, Adamson PC, Blaney S, Fine HA, Gorlick R, Haber M, et al. Testing of new agents in childhood cancer preclinical models: meeting summary. Clin Cancer Res. 2002;8(12):3646–57.

    PubMed  Google Scholar 

  25. Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer. 2007;49:928–40.

    Article  PubMed  Google Scholar 

  26. Carol H, Houghton PJ, Morton CL, Kolb EA, Gorlick R, Reynolds P, et al. Initial testing of topotecan by the pediatric preclinical testing program. Pediatr Blood Cancer. 2010;54(5):707–15.

    PubMed  PubMed Central  Google Scholar 

  27. Stewart E, Federico S, Karlstrom A, Shelat A, Sablauer A, Pappo A, et al. The childhood solid tumor network: a new resource for the developmental biology and oncology research communities. Dev Biol. 2016;411:287–93.

    Article  CAS  PubMed  Google Scholar 

  28. The EurOPDX consortium. 2016. http://europdx.eu/. Accessed 29 July 2016.

  29. Nicolle D, Fabre M, Simon-Coma M, Gorse A, Kappler R, Nonell L, et al. Patient-derived xenografts from pediatric liver cancer predict tumor recurrence and advise clinical management. Hepatology. 2016;64(4):1121–35.

    Article  CAS  PubMed  Google Scholar 

  30. Bissig-Choisat B, Kettlun-Leyton C, Legras XD, Zorman B, Barzi M, Chen LL, et al. Novel patient-derived xenograft and cell line models for therapeutic testing of pediatric liver cancer. J Hepatol. 2016;65(2):325–33.

    Article  CAS  PubMed  Google Scholar 

  31. Braekeveldt N, Wigerup C, Tadeo I, Beckman S, Sandén C, Jönsson J, et al. Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours. Cancer Lett. 2016;375(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-Hernández CJ, Mateo-Lozano S, García M, Casalà C, Briansó F, Castrejón N, et al. Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens. Oncotarget. 2016;7(13):16112–29.

    PubMed  PubMed Central  Google Scholar 

  33. Krytska K, Ryles HT, Sano R, Raman P, Infarinato NR, Hansel TD, et al. Crizotinib synergizes with chemotherapy in preclinical models of neuroblastoma. Clin Cancer Res. 2016;22(4):948–60.

    Article  CAS  PubMed  Google Scholar 

  34. Geier B, Kurmashev D, Kurmasheva RT, Houghton PJ. Preclinical childhood sarcoma models: drug efficacy biomarker identification and validation. Front Oncol. 2015;5:193.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Monsma DJ, Cherba DM, Richardson PJ, Vance S, Rangarajan S, Dylewski D, et al. Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance. Pediatr Blood Cancer. 2014;61:1570–7.

    Article  CAS  PubMed  Google Scholar 

  36. Saulnier Sholler GL, Bond JP, Bergendahl G, Dutta A, Dragon J, Neville K, et al. Feasibility of implementing molecular-guided therapy for the treatment of patients with relapsed or refractory neuroblastoma. Cancer Med. 2015;4(6):871–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bult CJ, Krupke DM, Begley DA, Richardson JE, Neuhauser SB, Sundberg JP, et al. Mouse Tumor Biology (MTB): a database of mouse models for human cancer. Nucleic Acids Res. 2015;43(Database issue): D818–D824.

  38. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73(17):5315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cassidy JW, Caldas C, Bruna A. Maintaining tumour heterogeneity in patient-derived tumour xenografts. Cancer Res. 2015;75(15):2963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner D. Humanized mice for immune system investigation: progress, promise and challenges. Nature Rev Immunol. 2012;12(11):786–98.

    Article  CAS  Google Scholar 

  41. Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol Sci Appl. 2016;9:15–28.

    Article  PubMed  PubMed Central  Google Scholar 

  42. De la Fuente A, Alonso-Alconada L, Costa C, Cueva J, Garcia-Caballero T, Lopez-Lopez R, et al. M-trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J Natl Cancer Inst. 2015;107:1–10.

    Google Scholar 

  43. Dong Z, Imai A, Krishnamurthy S, Zhang Z, Zeitlin BD, Nör JE. Xenograft tumors vascularized with murine blood vessels may overestimate the effect of anti-tumor drugs: a pilot study. PLoS One. 2013;8(12):e84236.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Green JL, La J, Yum KW, Desai P, Rodewald LW, Zhang X, et al. Paracrine Wnt signaling both promotes and inhibits human breast tumor growth. Proc Natl Acad Sci USA. 2013;110(17):6991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms Christine O’Hara for help with the English version of this manuscript. This work was supported by Grants from Institut Català d’Oncologia (ICO), Instituto de Salud Carlos III (PI14/00647), Fundació A. BOSCH, and Fundació Amics Joan Petit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarzosa, P., Navarro, N., Giralt, I. et al. Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments. Clin Transl Oncol 19, 44–50 (2017). https://doi.org/10.1007/s12094-016-1557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-016-1557-2

Keywords

Navigation