Skip to main content

Advertisement

Log in

Genetic modification of hypoxia signaling in animal models and its effect on cancer

  • Educational Series – Blue Series
  • Advances in Translational Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Conditions that cause hypoxemia or generalized tissue hypoxia, which can last for days, months, or even years, are very common in the human population and are among the leading causes of morbidity, disability, and mortality. Therefore, the molecular pathophysiology of hypoxia and its potential deleterious effects on human health are important issues at the forefront of biomedical research. Generalized hypoxia is a consequence of highly prevalent medical disorders that can severely reduce the capacity for O2 exchange between the air and pulmonary capillaries. In recent years, some of the key O2-dependent signaling pathways have been characterized at the molecular level. In particular, the prolyl hydroxylase (PHD)-hypoxia-inducible factor (HIF) cascade has emerged as the master regulator of a general gene expression program involved in cell/tissue/organ adaptation to hypoxia. Hypoxia has emerged as a critical factor in cancer because it can promote tumor initiation, progression, and resistance to therapy. Beyond its role in neovascularization as a mechanism of tumor adaptation to nutrient and O2 deprivation, hypoxia has been linked to prolonged cellular lifespan and immortalization, the generation of “oncometabolites”, deregulation of stem cell proliferation, and inflammation, among other tumor hallmarks. Hypoxia may contribute to cancer through several independent pathways, the inter-connections of which have yet to be elucidated. Furthermore, the relevance of chronic hypoxemia in the initiation and progression of cancer has not been studied in depth in the whole organism. Therefore, we explore here the contributions of hypoxia to the whole organism by reviewing studies on genetically modified mice with alterations in the key molecular factors regulating hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing and metabolic control. Compr Physiol. 2013;3:1135–90.

    CAS  PubMed  Google Scholar 

  2. Bruick RK. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 2003;17:2614–23.

    CAS  PubMed  Google Scholar 

  3. Zepeda AB, Pessoa A, Castillo RL, Figueroa CA, Pulgar VM, Farías JG. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. Cell Biochem Funct. 2013;31:451–9.

    CAS  PubMed  Google Scholar 

  4. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5:343–54.

    CAS  PubMed  Google Scholar 

  5. Fandrey J, Gorr TA, Gassmann M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 2006;71:642–51.

    CAS  PubMed  Google Scholar 

  6. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92:5510–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Janke K, Brockmeier U, Kuhlmann K, Eisenacher M, Nolde J, Meyer HE, et al. Factor inhibiting HIF-1 (FIH-1) modulates protein interactions of apoptosis-stimulating p53 binding protein 2 (ASPP2). J Cell Sci. 2013;126:2629–40.

    CAS  PubMed  Google Scholar 

  8. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    CAS  PubMed  Google Scholar 

  9. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Heikkilä M, Pasanen A, Kivirikko KI, Myllyharju J. Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci. 2011;68:3885–901.

    PubMed  Google Scholar 

  11. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294:1337–40.

    CAS  PubMed  Google Scholar 

  12. Mahon PC, Hirota K, Semenza GL. FIH: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15:2674–86.

    Google Scholar 

  13. Ratcliffe PJ. Oxygen sensing and hypoxia signaling pathways in animals: the implications of physiology for cancer. J Physiol. 2013;591:2027–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Myllyharju J. Prolyl-4-hydroxylases, master regulators of the hypoxia response. Acta Physiol. 2013;208:148–65.

    CAS  Google Scholar 

  15. Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D, et al. The asparaginyl hydroxylase factor inhibiting HIF-1α is an essential regulator of metabolism. Cell Metab. 2010;11:364–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factor for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    CAS  PubMed  Google Scholar 

  17. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Crane LMA, Hesselink JW, Zeebregts CJAM, Francis KP, de Jong JS, van Dam GM. Animal models of esophageal cancer and hypoxia: an overview of applications, possibilities and limitations. Glob J Biochem. 2010;2:187–204.

    Google Scholar 

  19. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Graves EE, Vilalta M, Cecik IK, Erler JT, Tran PT, Felsher D, et al. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin Cancer Res. 2010;16:4843–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Vandamme TF. Use of rodents as models of human diseases. J Pharm Bioallied Sci. 2014;6:2–9.

    PubMed Central  PubMed  Google Scholar 

  23. Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer. 2007;7:645–58.

    CAS  PubMed  Google Scholar 

  24. Wu X, Gong S, Roy-Burman P, Lee P, Culig Z. Current mouse and cell models in prostate cancer research. Endocr Relat Cancer. 2013;20:R155–70.

    CAS  PubMed  Google Scholar 

  25. Cox BC, Liu Z, Mellado-Lagarde MM, Zuo J. Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. 2012;13:295–322.

    PubMed Central  PubMed  Google Scholar 

  26. Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ. Generation of a mouse model of von Hippel–Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1α. Cancer Res. 2011;71:6848–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Ahn GO, Seita J, Hong BJ, Kim YE, Bok S, Lee CJ, et al. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. Proc Natl Acad Sci USA. 2014;111:2698–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1998;95:7987–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J. 2001;15:1312–4.

    CAS  PubMed  Google Scholar 

  30. Chen Z, Liu X, Mei Z, Wang Z, Xiao W. EAF2 suppresses hypoxia-induced factor 1α transcriptional activity by disrupting its interaction with coactivator CBP/p300. Mol Cell Biol. 2014;34:1085–99.

    PubMed Central  PubMed  Google Scholar 

  31. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors—similar but not identical. Mol Cells. 2010;29:435–42.

    CAS  PubMed  Google Scholar 

  32. Patel SA, Simon MC. Biology of hypoxia-inducible factor-2α in development and disease. Cell Death Differ. 2008;15:628–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lando D, Pongratz I, Poellinger L, Whitelaw ML. A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1α and the HIF-like factor. J Biol Chem. 2000;275:4618–27.

    CAS  PubMed  Google Scholar 

  34. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15:678–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 2001;414:550–4.

    CAS  PubMed  Google Scholar 

  36. Ryan HE, Lo J, Johnson RS. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17:3005–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 1998;12:3320–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kotch LE, Iyer NV, Laughner E, Semenza GL. Defective vascularization of HIF-1α-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol. 1999;209:254–67.

    CAS  PubMed  Google Scholar 

  39. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res. 2000;60:4010–5.

    CAS  PubMed  Google Scholar 

  40. Méndez O, Zavadil J, Esencay M, Lukyanov Y, Santovasi D, Wang SH, et al. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer. 2010;9:133.

    PubMed Central  PubMed  Google Scholar 

  41. Takeda T, Okuyama H, Nishizaya Y, Tomita S, Inoue M. Hypoxia inducible factor-1α is necessary for invasive phenotype in Vegf-deleted islet cell tumors. Sci Rep. 2012;2:494.

    PubMed Central  PubMed  Google Scholar 

  42. Hanahan D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315:115–22.

    CAS  PubMed  Google Scholar 

  43. Kim WY, Safran M, Buckley MR, Ebert BL, Glickman J, Bosenberg M, et al. Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J. 2006;25:4650–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kaelin WG. Von Hippel–Lindau disease. Annu Rev Pathol. 2007;2:145–73.

    CAS  PubMed  Google Scholar 

  45. Peng J, Zhang L, Drysdale L, Fong GH. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc Natl Acad Sci USA. 2000;97:8386–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Steenhard BM, Freeburg PB, Isom K, Stroganova L, Borza DB, Hudson BG St et al. Kidney development and gene expression in the HIF2α knockout mouse. Dev. Dyn. 2007;236:1115–25.

  47. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat Genet. 2003;35:331–40.

    CAS  PubMed  Google Scholar 

  48. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O, et al. HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J. 2003;22:1134–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, et al. Hif-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20:557–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kaelin WG Jr. The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008;8:865–73.

    CAS  PubMed  Google Scholar 

  51. Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, et al. Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001;85:881–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Acker T, Diez-Juan A, Aragones J, Tjwa M, Brusselmans K, Moons L, et al. Genetic evidence for a tumor suppressor role of HIF-2α. Cancer Cell. 2005;8:131–41.

    CAS  PubMed  Google Scholar 

  53. Skuli N, Liu L, Runge A, Wang T, Yuan L, Patel S, et al. Endothelial deletion of hypoxia-inducible factor-2α (HIF-2α) alters vascular function and tumor angiogenesis. Blood. 2009;114:469–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kim WY, Perera S, Zhou B, Carretero J, Yeh JJ, Heathcote SA, et al. HIF2α cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119:2160–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Collins MA, di Magliano MP. Kras as a key oncogene and therapeutic target in pancreatic cancer. Front Physiol. 2014;4:407.

    PubMed Central  PubMed  Google Scholar 

  56. Mazumdar J, Hickey MM, Pant DK, Durham AC, Sweet-Cordero A, Vachani A, et al. HIF-2α deletion promotes Kras-driven lung tumor development. Proc Natl Acad Sci USA. 2010;107:14182–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Criscimanna A, Duan LJ, Rhodes JA, Fendrich V, Wickline E, Hartman DJ, et al. PanIN-specific regulation of Wnt signaling by HIF2α during early pancreatic tumorigenesis. Cancer Res. 2013;73:4781–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 2003;1:E83.

    PubMed Central  PubMed  Google Scholar 

  59. Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MA, On M. Human HIF-3α4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J. 2005;19:1396–406.

    CAS  PubMed  Google Scholar 

  60. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11:407–20.

    CAS  PubMed  Google Scholar 

  61. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11:335–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, et al. C-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002;16:2530–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Lin CY, Lovén J, Ragl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Bersten DC, Sullivan AE, Peet DJ, Whitelaw ML. bHLH-PAS proteins in cancer. Nat Rev Cancer. 2013;13:827–41.

    CAS  PubMed  Google Scholar 

  65. Keith B, Adelman DM, Simon MC. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci USA. 2001;98:6692–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hao N, Bhakti VL, Peet DJ, Whitelaw ML. Reciprocal regulation of the basic helix-loop-helix/Per-Arnt-Sim partner proteins, Arnt and Arnt2, during neuronal differentiation. Nucleic Acids Res. 2013;41:5626–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Denison MS, Soshilov AA, He G, DeGroot D, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci. 2011;124:1–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Hirose K, Morita M, Ema M, Mimura J, Hamada H, Fujii H, et al. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol. 1996;16:1706–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Tomita S, Sinal CJ, Yim SH, Gonzalez FJ. Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene inductionby the aryl hydroxarbon receptor and hypoxia-inducible factor 1α. Mol Endocrinol. 2000;14:1674–81.

    CAS  PubMed  Google Scholar 

  70. Lee K, Zhang H, Qian S, Rey DM, Liu JO, Semenza GL. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci USA. 2009;106:17910–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Tamási V, Monostory K, Prough RA, Falus A. Role ofxenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cell Mol Life Sci. 2011;68:1131–46.

    PubMed  Google Scholar 

  72. Shi S, Yoon DY, Hodge-Bell KC, Bebenek IG, Whitekys MJ, Zhang R, et al. The aryl hydrocarbon receptor nuclear translocator (Arnt) is required for tumor initiation by benzo[a]pyrene. Carcinogenesis. 2009;30:1957–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22:4991–5004.

    CAS  PubMed  Google Scholar 

  74. Czyzyk-Krzeska MF, Meller J. von Hippel–Lindau tumor suppressor: not only HIF’s executioner. Trends Mol Med. 2004;10:146–9.

    CAS  PubMed  Google Scholar 

  75. Kaelin WG Jr. The von Hippel–Lindau protein, HIF hydroxylation, and oxygen sensing. Biochem Biophys Res Commun. 2005;338:627–38.

    CAS  PubMed  Google Scholar 

  76. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, et al. Von Hippel–Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 2011;7:e1002312.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Laii Y, Qiao M, Song M, Weintraub ST, Shiio Y. Quantitative proteomics identifies the Myb-binding protein p160 as a novel target of the von Hippel–Lindau tumor suppressor. PLoS One. 2011;6:e16975.

    Google Scholar 

  78. Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel–Lindau protein. Mol Cell. 2006;22:395–405.

    CAS  PubMed  Google Scholar 

  79. Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, et al. Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA. 1997;94:9102–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Haase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc Natl Acad Sci USA. 2001;98:1583–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Rankin EB, Tomaszewski JE, Haase VH. Renal cyst development in mice with conditional inactivation of the von Hippel–Lindau tumor suppressor. Cancer Res. 2006;66:2576–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117:1616–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Puri S, Cano DA, Hebrok M. A role for von Hippel–Lindau protein in pancreatic beta-cell function. Diabetes. 2009;58:433–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Shen HC, Adem A, Ylaya K, Wilson A, He M, Lorang G, et al. Deciphering von Hippel- Lindau (VHL/Vhl)-associated pancreatic manifestations by inactivating Vhl in specific pancreatic cell populations. PLoS One. 2009;4:e4897.

    PubMed Central  PubMed  Google Scholar 

  85. Yang M, Chowdhury R, Ge W, Hamed RB, McDonough MA, Claridge TD, et al. Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS J. 2011;278:1086–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002;295(5556):858–61. doi:10.1126/science.1068592.

    CAS  PubMed  Google Scholar 

  87. Khan MN, Batthacharyya T, Andrikopoulos P, Esteban MA, Barod R, Connor T, et al. Factor inhibiting HIF (FIH) promotes renal cancer cell survival by protecting cells from HIF-1α-mediated apoptosis. Br J Cancer. 2011;104:1151–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Zhang L, Sun ZJ, Bian Y, Kulkarni AB. MicroRNA-135b acts as a tumor promoter by targeting the hypoxia-inducible factor pathway in genetically defined mouse model of head and neck squamous cell carcinoma. Cancer Lett. 2013;331:230–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Oehme F, Ellinghaus P, Kolkhof P, Smith TJ, Ramakrishan S, Hütter J, et al. Overexpression of PH-4, a novel putative 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun. 2002;296:343–9.

    CAS  PubMed  Google Scholar 

  90. Koivunen P, Tiainen P, Hyvärinen J, Williams KE, Sormunen R, Klaus SJ, et al. An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor α. J Biol Chem. 2007;282:30544–52.

    CAS  PubMed  Google Scholar 

  91. McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Liénard BM, et al. Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA. 2006;103:9814–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Chowdhury R, McDonough MA, Mecinović J, Loenarz C, Flashman E, Hewitson KS, et al. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Structure. 2009;17:9891–9.

    Google Scholar 

  93. Schödel J, Klanke B, Weidemann A, Buchholz B, Bernhardt W, Bertog M, et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am J Pathol. 2009;174:1663–74.

    PubMed Central  PubMed  Google Scholar 

  94. Minamishima YJ, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood. 2007;111:3236–44.

    PubMed  Google Scholar 

  95. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J. 2003;22:4082–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. D’Angelo G, Duplan E, Boyer N, Vigne P, Frelin C. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem. 2003;278:38183–7.

    PubMed  Google Scholar 

  97. Henze AT, Riedel J, Diem T, Wenner J, Flamme I, Pouyseggur J, et al. Prolyl hydroxylases 2 and 3 act in gliomas as protective negative feedback regulators of hypoxia-inducible factors. Cancer Res. 2010;70:357–66.

    CAS  PubMed  Google Scholar 

  98. Jokilehto T, Jaakkola PM. The role of HIF prolyl hydroxylases in tumour growth. J Cell Mol Med. 2010;14:758–70.

    CAS  PubMed  Google Scholar 

  99. Mazzone M, Dettori D, de Oliveira RL, Loges S, Schmidt T, Jonckx B, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell. 2009;136:839–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Klotzsche von-Ameln A, Muschter A, Mamlouk S, Kalucka J, Prade I, Franke K, et al. Inhibition of HIF prolyl hydroxylase-2 blocks tumor growth in mice through the antiproliferative activity of TGFβ. Cancer Res. 2011;71:3306–16.

    CAS  PubMed  Google Scholar 

  101. Couvelard A, Deschamps L, Rebours V, Sauvanet A, Gatter K, Pezzella F, et al. Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3 and FIH is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin Cancer Res. 2008;14:6634–9.

    CAS  PubMed  Google Scholar 

  102. Gossage L, Zaitoun A, Fareed KR, Turley H, Aloysius M, Lobo DN, et al. Expression of key hypoxia sensing prolyl-hydroxylases PHD1, -2 and -3 in pancreaticobiliary cancer. Histopathology. 2010;56:908–20.

    PubMed  Google Scholar 

  103. Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006;26:8336–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Arsenault PR, Pei F, Lee R, Kerestes H, Percy MJ, Keith B, et al. A Knock-in mouse model of human PHD2 gene-associated erythrocytosis establishes a haploinsufficiency mechanism. J Biol Chem. 2013;288:33571–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Huang M, Nguyen P, Jia F, Hu S, Gong Y, de Almeida PE, et al. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicyrcle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarctation. Circulation. 2011;124:S46–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Klotzsche-von Ameln A, Muschter A, Heimesaat MM, Breier G, Wielockx B. HIF prolyl hydroxylase-2 inhibition diminishes tumor growth through matrix metalloproteinase-induced TGFβ activation. Cancer Biol Ther. 2012;13:216–23.

    CAS  PubMed  Google Scholar 

  107. Mamlouk S, Kalucka J, Singh RP, Franke K, Muschter A, Langer A, et al. Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development. Int J Cancer. 2014;134:849–58.

    CAS  PubMed  Google Scholar 

  108. Lee KA, Lynd JD, O’Reilly S, Kiupel M, McCormick JJ, LaPres JJ. The biphasic role of the hypoxia-inducible factor prolyl-4-hydroxylase, PHD2, in modulating tumor-forming potential. Mol Cancer Res. 2008;6:829–42.

    CAS  Google Scholar 

  109. Chan DA, Kawahara TLA, Sutphin PD, Chang HY, Chi JT, Giaccia AJ. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 2009;15:527–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Andersen S, Donnem T, Stenvold H, Al-Saad S, Al-Shibli K, Busund LT, et al. Overexpression of the HIF hydroxylases PHD1, PHD2, PHD3 and FIH are individually and collectively unfavorable prognosticators for NSCLC survival. PLoS One. 2011;6:e23847.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Wouters BG, van den Beucken T, Magagnin MG, Lambin P, Koumenis C. Targeting hypoxia tolerance in cancer. Drug Resis Updat. 2004;7:25–40.

    CAS  Google Scholar 

  112. Aragonés J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, et al. Deficiency or inhibition of oxygen sensor Phd1 induces hipoxia tolerance by reprogramming basal metabolism. Nat Genet. 2008;40:170–80.

    PubMed  Google Scholar 

  113. Magalhães J, Ascensão A, Soares JM, Ferreira R, Neuparth MJ, Marques F, et al. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J Appl Physiol. 2005;99:1247–53.

    PubMed  Google Scholar 

  114. Schneider M, Van Geyte K, Fraisl P, Kiss J, Aragonés J, Mazzone M, et al. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology. 2010;138:1143–54.

    CAS  PubMed  Google Scholar 

  115. Kikhaylova O, Ignacak ML, Barankiewicz TJ, Harbaugh SV, Yi Y, Maxwell PH, et al. The von Hippel–Lindau tumor suppressor protein and Egl-9-type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol. 2008;28:2701–17.

    Google Scholar 

  116. Erez N, Milyavsky M, Eilam R, Shats I, Goldfinger N, Rotter V. Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1α activation and inhibits tumor growth. Cancer Res. 2003;63:8777–83.

    CAS  PubMed  Google Scholar 

  117. Xue J, Li X, Jiao S, Wei Y, Wu G, Fang J. Prolyl hydroxylase-3 is down-regulated in colorectal cancer cells and inhibits IKKβ independent of hydroxylase activity. Gastroenterology. 2010;138:606–15.

    CAS  PubMed  Google Scholar 

  118. Su Y, Loos M, Giese N, Hines OJ, Diebold I, Görlach A, et al. PHD3 regulates differentiation, tumour growth and angiogenesis in pancreatic cancer. Br J Cancer. 2010;103:1571–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Minamishima YA, Moslehi J, Padera RF, Bronson RT, Liao R, Kaelin WG Jr. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol Cell Biol. 2009;29:5729–41.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The AC lab was supported by grants to from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028), Consejeria de Ciencia e Innovacion (CTS-6844 and CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0135-2010 and PI-0306-2012). D. A. C. was supported by the grants from the Spanish Ministry of Science and Innovation (SAF2011-26805) and Andalusian Regional Ministry of Science and Innovation (CTS-7478).This work has been also possible thanks to the Grant PIE13/0004 co-funded by the ISCIII and FEDER funds. BFA was funded by an FPU fellowship from the Spanish Ministry of Economy and Competitivity.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Cano or A. Carnero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Heredia, J.M., Felipe-Abrio, B., Cano, D.A. et al. Genetic modification of hypoxia signaling in animal models and its effect on cancer. Clin Transl Oncol 17, 90–102 (2015). https://doi.org/10.1007/s12094-014-1236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-014-1236-0

Keywords

Navigation