Skip to main content
Log in

Up-regulation of miR-9 expression as a poor prognostic biomarker in patients with non-small cell lung cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Emerging evidences indicate that dysregulated microRNAs are implicated in cancer tumorigenesis and progression. MicroRNA-9 (miR-9) has various expression patterns in diverse human cancers. However, its clinical significance in human non-small cell lung cancer has not yet been elucidated. In the present study, we detected the expression of miR-9 in non-small cell lung cancer and adjacent noncancerous tissues and explored its relationships with clinicopathological characteristics and prognosis.

Methods

Expression levels of miR-9 in 116 pairs of non-small cell lung cancer and adjacent normal tissues were detected by real-time quantitative RT-PCR assay. To determine its prognostic value, overall survival (OS) and progression-free survival (PFS) were evaluated using the Kaplan–Meier method. Univariate and multivariate analysis were performed using the Cox proportional hazard analysis.

Results

MiR-9 expression in non-small cell lung cancer tissues was significantly higher than that in adjacent normal tissues (p = 0.001), and its up-regulation was significantly correlated to advanced tumor–node–metastasis (TNM) stage (p < 0.001), tumor size (p = 0.013), and lymph node metastasis (p = 0.001). Furthermore, Kaplan–Meier analysis demonstrated that high miR-9 expression clearly predicted poorer PFS (p < 0.001) and OS (p < 0.001). In the multivariate analysis, increased miR-9 expression was an independent prognostic factor for both PFS (p = 0.002) and OS (p = 0.013).

Conclusions

MiR-9 was up-regulated in non-small cell lung cancer tissues and correlated with adverse clinical features and unfavorable survival, indicating that miR-9 might be involved in non-small lung cancer progression and could serve as a promising biomarker for further risk stratification in the treatment of this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  2. Patz EF Jr, Goodman PC, Bepler G. Screening for lung cancer. N Engl J Med. 2000;343:1627–33.

    Article  PubMed  Google Scholar 

  3. Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C, et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med. 2005;352:2589–97.

    Article  CAS  PubMed  Google Scholar 

  4. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vans-teenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med. 2004;350:351–60.

    Article  PubMed  Google Scholar 

  5. Kato H, Ichinose Y, Ohta M, Hata E, Tsubota N, Tada H, et al. A randomized trial of adjuvant chemotherapy with uracil–tegafur for adenocarcinoma of the lung. N Engl J Med. 2004;350:1713–21.

    Article  CAS  PubMed  Google Scholar 

  6. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  7. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  8. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  9. Kuo PL, Liao SH, Hung JY, Huang MS, Hsu YL. MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein. Biochim Biophys Acta. 2013;1830:3756–66.

    Article  CAS  PubMed  Google Scholar 

  10. Kaduthanam S, Gade S, Meister M, Brase JC, Johannes M, Dienemann H, et al. Serum miR-142-3p is associated with early relapse in operable lung adenocarcinoma patients. Lung Cancer. 2013;80:223–7.

    Article  PubMed  Google Scholar 

  11. Cai J, Wu J, Zhang H, Fang L, Huang Y, Yang Y, et al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 2013;73:756–66.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, et al. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One. 2013;8:e55719.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, Danielsen SA, et al. MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 2012;14:868–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, et al. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-κB1. FEBS J. 2009;276:5537–46.

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y, Correa AM, Hoque A, Guan B, Ye F, Huang J, et al. Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer. 2011;1:132–43.

    Article  Google Scholar 

  16. Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29:5724–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. MiR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12:247–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, et al. Mir-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2009;19:375–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shigehara K, Yokomuro S, Ishibashi O, Mizuguchi Y, Arima Y, Kawahigashi Y, et al. Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One. 2011;6:e23584.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, Loffredo CA, et al. MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS One. 2012;7:e39011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Võsa U, Vooder T, Kolde R, Fischer K, Välk K, Tõnisson N, et al. Identification of miR-374a as a prognostic marker for survival in patients with early-stage non-small cell lung cancer. Genes Chromosomes Cancer. 2011;50:812–22.

    Article  PubMed  Google Scholar 

  23. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  CAS  PubMed  Google Scholar 

  24. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumors. J Thorac Oncol. 2007;2:706–14.

    Article  PubMed  Google Scholar 

  25. Mei Q, Li X, Meng Y, Wu Z, Guo M, Zhao Y, et al. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS One. 2012;7:e46890.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chen X, Gong J, Zeng H, Chen N, Huang R, Huang Y, et al. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Res. 2010;70:2728–38.

    Article  CAS  PubMed  Google Scholar 

  27. Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, et al. MiR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA. 2010;107:264–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vinci S, Gelmini S, Mancini I, Malentacchi F, Pazzagli M, Beltrami C, et al. Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. Methods. 2013;59:138–46.

    Article  CAS  PubMed  Google Scholar 

  29. Hu X, Schwarz JK, Lewis JS Jr, Huettner PC, Rader JS, Deasy JO, et al. A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010;70:1441–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Myong NH. Reduced expression of E-cadherin in human non-small cell lung carcinoma. Cancer Res Treat. 2004;36:56–61.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shu.

Additional information

T. Xu and X. Liu contributed equally to this work and are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Liu, X., Han, L. et al. Up-regulation of miR-9 expression as a poor prognostic biomarker in patients with non-small cell lung cancer. Clin Transl Oncol 16, 469–475 (2014). https://doi.org/10.1007/s12094-013-1106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-013-1106-1

Keywords

Navigation