Skip to main content

Advertisement

Log in

Tools for protein-protein interaction network analysis in cancer research

  • Educational Series / Blue Series
  • Advances in Translational Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

As cancer is a complex disease, the representation of a malignant cell as a protein-protein interaction network (PPIN) and its subsequent analysis can provide insight into the behaviour of cancer cells and lead to the discovery of new biomarkers. The aim of this review is to help life-science researchers without previous computer programming skills to extract meaningful biological information from such networks, taking advantage of easyto-use, public bioinformatics tools. It is structured in four parts: the first section describes the pipeline of consecutive steps from network construction to biological hypothesis generation. The second part provides a repository of public, user-friendly tools for network construction, visualisation and analysis. Two different and complementary approaches of network analysis are presented: the topological approach studies the network as a whole by means of structural graph theory, whereas the global approach divides the PPIN into sub-graphs, or modules. In section three, some concepts and tools regarding heterogeneous molecular data integration through a PPIN are described. Finally, the fourth part is an example of how to extract meaningful biological information from a colorectal cancer PPIN using some of the described tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a Systems Biology disease. Biosystems 83:81–90

    Article  PubMed  CAS  Google Scholar 

  2. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  3. Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31:2–8

    Article  PubMed  CAS  Google Scholar 

  4. Wang E, Lenferink A, O’Connor-McCourt M (2007) Cancer systems biology: exploring cancerassociated genes on cellular networks. Cell Mol Life Sci 64:1752–1762

    Article  PubMed  CAS  Google Scholar 

  5. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1:2

    Article  PubMed  Google Scholar 

  6. Clermont G, Auffray C, Moreau Y et al (2009) Bridging the gap between systems biology and medicine. Genome Med 1:88

    Article  PubMed  Google Scholar 

  7. Alberghina L, Höfer T, Vanoni M (2009) Molecular networks and system-level properties. J Biotechnol 144:224–233

    Article  PubMed  CAS  Google Scholar 

  8. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  PubMed  CAS  Google Scholar 

  9. Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM (2005) Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol 6:R40

    Article  PubMed  Google Scholar 

  10. Kann MG (2007) Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform 8:333–346

    Article  PubMed  CAS  Google Scholar 

  11. Baudot A, Gómez-López G, Valencia A (2009) Translational disease interpretation with molecular networks. Genome Biol 10:221. Review

    Article  PubMed  Google Scholar 

  12. Wu Z, Zhao X, Chen L (2009) Identifying responsive functional modules from protein-protein interaction network. Mol Cells 27:271–277. Review

    Article  PubMed  CAS  Google Scholar 

  13. Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204

    Article  PubMed  CAS  Google Scholar 

  14. Wang YC, Chen BS (2011) A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med Genom 4:2

    Article  Google Scholar 

  15. Jonson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297

    Article  Google Scholar 

  16. Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein-protein networks. Bioinformatics 22:2800–2805

    Article  PubMed  CAS  Google Scholar 

  17. Sanz-Pamplona R, Aragüés R, Driouch K et al (2011) Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2(+) and ErbB-2(-) primary breast tumors. Am J Pathol 179:564–579

    Article  PubMed  Google Scholar 

  18. Pujana MA, Han JD, Starita LM et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349

    Article  PubMed  CAS  Google Scholar 

  19. Junker BH, Schreiber F (2007) Analysis of biological networks. Chapter 3: Graph theory. John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  20. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human Protein Reference Database: 2009 update. Nucleic Acids Res 37:D767–772

    Article  PubMed  CAS  Google Scholar 

  21. von Mering C, Huynen M, Jaeggi D et al (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261

    Article  Google Scholar 

  22. Xenarios I, Salwínski L, Duan XJ et al (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305

    Article  PubMed  CAS  Google Scholar 

  23. Lehne B, Schlitt T (2009) Protein-protein interaction databases: keeping up with growing interactomes. Hum Genomics 3:291–297

    PubMed  CAS  Google Scholar 

  24. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein protein interactions. Proteomics 7:2833–2842. Review

    Article  PubMed  Google Scholar 

  25. Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3:e43. Review

    Article  PubMed  Google Scholar 

  26. Kolaczyk E (2009) Mapping networks. In: Statistical analysis of network data. Springer

  27. Huang S (2004) Back to the biology in systems biology: what can we learn from biomolecular networks? Brief Funct Genomic Proteomic 2:279–297

    Article  PubMed  CAS  Google Scholar 

  28. Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23:2651–2659. Review

    Article  PubMed  CAS  Google Scholar 

  29. Dorogovtsev SN, Mendes JF, Samukhin AN (2001) Size-dependent degree distribution of a scale-free growing network. Phys Rev E Stat Nonlin Soft Matter Phys 63:062101

    Article  PubMed  CAS  Google Scholar 

  30. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein-protein interactions. J Med Genet 43:691

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-Garcia J, Guney E, Aragues R et al (2010) Biana: a software framework for compiling biological interactions and analyzing networks. BMC Bioinform 11:56

    Article  Google Scholar 

  32. Lee SA, Chan CH, Chen TC et al (2009) POINeT: protein interactome with sub-network analysis and hub prioritization. BMC Bioinform 10:114

    Article  Google Scholar 

  33. Minguez P, Götz S, Montaner D et al (2009) SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks. Nucleic Acids Res 37:W109–114

    Article  PubMed  CAS  Google Scholar 

  34. Chaurasia G, Iqbal Y, Hänig C et al (2007) UniHI: an entry gate to the human protein interactome. Nucleic Acids Res 35:D590–594

    Article  PubMed  CAS  Google Scholar 

  35. Pavlopoulos GA, Wegener AL, Schneider R (2008) A survey of visualization tools for biological network analysis. BioData Min 1:12

    Article  PubMed  Google Scholar 

  36. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  37. Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239

    Article  PubMed  CAS  Google Scholar 

  38. Pavlopoulos GA, O’Donoghue SI, Satagopam VP et al (2008) Arena3D: visualization of biological networks in 3D. BMC Syst Biol 2:104

    Article  PubMed  Google Scholar 

  39. Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21:4432–4433

    Article  PubMed  CAS  Google Scholar 

  40. Assenov Y, Ramírez F, Schelhorn SE et al (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  PubMed  CAS  Google Scholar 

  41. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  42. Barabási AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:60–69

    Article  PubMed  Google Scholar 

  43. Goh KI, Cuskick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690

    Article  PubMed  CAS  Google Scholar 

  44. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Genet 2:e88

    Article  PubMed  Google Scholar 

  45. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601

    Article  PubMed  Google Scholar 

  46. Chen J, Aronow BJ, Jegga AG (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinform 10:73

    Article  Google Scholar 

  47. Lin CY, Chin CH, Wu HH et al (2008) Hubba: hub objects analyzer-a framework of interactome hubs identification for network biology. Nucleic Acids Res 36:W438–443

    Article  PubMed  CAS  Google Scholar 

  48. Junker BH, Koschützki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinform 7:219

    Article  Google Scholar 

  49. Junker BH, Schreiber F (2007) Network centralities. In: Analysis of biological networks. John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  50. Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  51. Moon HS, Bhak J, Lee KH, Lee D (2005) Architecture of basic building blocks in protein and domain structural interaction networks. Bioinformatics 21:1479–1486

    Article  PubMed  CAS  Google Scholar 

  52. Assenov Y, Ramírez F, Schelhorn SE et al (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  PubMed  CAS  Google Scholar 

  53. Schreiber F, Schwöbbermeyer H (2005) MAVisto: a tool for the exploration of network motifs. Bioinformatics 21:3572–3574

    Article  PubMed  CAS  Google Scholar 

  54. Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection. Bioinformatics 22:1152–1153

    Article  PubMed  CAS  Google Scholar 

  55. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113. Review

    Article  PubMed  Google Scholar 

  56. Balasundaram B, Butengo S (2007) Network clustering. In: Analysis of biological networks. John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  57. Luo F, Yang Y, Chen C-F et al (2007) Modular organization of protein interaction networks. Bioinformatics 23:207–214

    Article  PubMed  CAS  Google Scholar 

  58. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402[6761 Suppl]:C47–52

    Article  PubMed  CAS  Google Scholar 

  59. Reimand J, Tooming L, Peterson H et al (2008) GraphWeb: mining heterogeneous biological networks for gene modules with functional significance. Nucleic Acids Res 36:W452–459

    Article  PubMed  CAS  Google Scholar 

  60. Vlasblom J, Wu S, Pu S et al (2006) GenePro: a Cytoscape plug-in for advanced visualization and analysis of interaction networks. Bioinformatics 22:2178–2179

    Article  PubMed  CAS  Google Scholar 

  61. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2

    Article  Google Scholar 

  62. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  PubMed  CAS  Google Scholar 

  63. Brohée S, Faust K, Lima-Mendez G et al (2008) NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res 36:W444–451

    Article  PubMed  Google Scholar 

  64. Rivera CG, Vakil R, Bader JS (2010) NeMo: Network Module identification in Cytoscape. BMC Bioinform 11[Suppl 1]:S61

    Article  Google Scholar 

  65. Ma’ayan A (2008) Network integration and graph analysis in mammalian molecular systems biology. IET Syst Biol 2:206–221. Review

    Article  PubMed  Google Scholar 

  66. Liu ET (2005) Systems biology, integrative biology, predictive biology. Cell 121:505–506. Review

    Article  PubMed  CAS  Google Scholar 

  67. McDermott JE, Costa M, Janszen D et al (2010) Separating the drivers from the driven: integrative network and pathway approaches aid identification of disease biomarkers from high-throughput data. Dis Markers 28:253–266. Review

    PubMed  CAS  Google Scholar 

  68. Mathew JP, Taylor BS, Bader GD et al (2007) From bytes to bedside: data integration and computational biology for translational cancer research. PLoS Comput Biol 3:e12

    Article  PubMed  Google Scholar 

  69. Camargo A, Azuaje F (2007) Linking gene expression and functional network data in human heart failure. PLoS One 2:e1347

    Article  PubMed  Google Scholar 

  70. Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042

    Article  PubMed  CAS  Google Scholar 

  71. Paquette J, Tokuyasu T (2010) EGAN: exploratory gene association networks. Bioinformatics 26:285–286

    Article  PubMed  CAS  Google Scholar 

  72. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform 7:109

    Article  Google Scholar 

  73. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460. Review

    Article  PubMed  CAS  Google Scholar 

  74. Ohta M, Seto M, Ijichi H et al (2009) Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression. Gastroenterology 136:206–216

    Article  PubMed  CAS  Google Scholar 

  75. Moon RT (2005) Wnt/beta-catenin pathway. Sci STKE 2005:cm1. Review

  76. Bertucci F, Salas S, Eysteries S et al (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23:1377–1391

    Article  PubMed  CAS  Google Scholar 

  77. Minguez P, Dopazo J (2011) Assessing the biological significance of gene expression signatures and co-expression modules by studying their network properties. PLoS One 6:e17474

    Article  PubMed  CAS  Google Scholar 

  78. Henderson BR (2000) Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2:653–660

    Article  PubMed  CAS  Google Scholar 

  79. Chua HN, Wong L (2008) Increasing the reliability of protein interactomes. Drug Discov Today 13:652–658

    Article  PubMed  CAS  Google Scholar 

  80. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276. Review

    Article  PubMed  CAS  Google Scholar 

  81. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  82. Kenny PA, Lee GY, Bissell MJ (2007) Targeting the tumor microenvironment. Front Biosci 12:3468–3474

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz-Pamplona, R., Berenguer, A., Sole, X. et al. Tools for protein-protein interaction network analysis in cancer research. Clin Transl Oncol 14, 3–14 (2012). https://doi.org/10.1007/s12094-012-0755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0755-9

Keywords

Navigation