Skip to main content

Advertisement

Log in

PET-CT in the staging and treatment of non-small-cell lung cancer

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Positron emission tomography with 2-(18F)-fluoro-2-deoxy-D-glucose (FDG-PET) is a metabolic imaging technique. FDG-PET is more accurate than CT for the evaluation of mediastinal involvement in patients with nonsmall-cell lung cancer, offering a high negative predictive value. It can detect occult metastases in 11% of patients, although the etiology of the extrathoracic isolated uptakes needs confirmation. Theoretically, FDG-PET can influence the planning volume for radiotherapy, primarily in patients with atelectasis. Quantification of metabolic activity using FDG-PET is influenced by the size of the lesion, glucose levels and the time elapsed since the isotope injection. More clinical trials are required to standardize the methods for performing PET, assess its use as a prognostic factor and for the evaluation of treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sobin LH, Wiyyekind C (eds) (2002) TNM classification of malignant tumours, 6th edn. John Wiley & Sons, New York

    Google Scholar 

  2. Vansteenkiste J, Fischer BM, Dooms C, Mortensen J (2004) Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol 5:531–540

    Article  PubMed  Google Scholar 

  3. Gould MK, Mclean CC, Kuschner WG et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285:914–924

    Article  PubMed  CAS  Google Scholar 

  4. Nomori H, Watanabe K, Ohtsuka T et al (2005) Visual and semiquantitative analyses for F-18 fluorodeoxyglucose PET scanning in pulmonary nodules 1 cm to 3 cm in size. Ann Thorac Surg 79:984–988

    Article  PubMed  Google Scholar 

  5. Nolop KB, Rodees CG, Brudin LH et al (1987) Glucose utilization in vivo by human pulmonary neoplasms. Cancer 60:2682–2689

    Article  PubMed  CAS  Google Scholar 

  6. Behzadi A, Ung Y, Lowe V, Deschamps C (2009) The role of positron emission tomography in the management of non-small cell lung cancer. Can J Surg 52:235–242

    PubMed  Google Scholar 

  7. Pieterman RM, van Putten JW, Meuzelaar JJ et al (2000) Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343:254–261

    Article  PubMed  CAS  Google Scholar 

  8. Port JL, Andrade RS, Levin MA et al (2005) Positron emission tomographic scanning in the diagnosis and staging of non-small cell lung cancer 2 cm in size or less. J Thorac Cardiovasc Surg 130:1611–1615

    Article  PubMed  Google Scholar 

  9. Gupta NC, Rogers JS, Graeber GM et al (2002) Clinical role of F-18 fluorodeoxyglucose positron emission tomography imaging in patients with lung cancer and suspected malignant pleural effusion. Chest 122:1918–1924

    Article  PubMed  CAS  Google Scholar 

  10. Erasmus JJ, McAdams HP, Rossi SE et al (2000) FDG PET of pleural effusions in patients with non-small cell lung cancer. AJR Am J Roentgenol 175:245–249

    PubMed  CAS  Google Scholar 

  11. Kramer H, Groen HJM (2003) Current concepts in the mediastinal lymph node staging in suspected lung cancer: comparison of positron emission tomography with F-18 fluorodeoxyglucose and mediastinoscopy. Ann Thorac Surg 75:231–235

    Article  Google Scholar 

  12. Dales RE, Stark RM, Raman S (1990) Computed tomography to stage lung cancer. Approaching a controversy using meta-analysis. Am Rev Respir Dis 141:1096–1101

    PubMed  CAS  Google Scholar 

  13. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL (1999) Metastases from non-small cell lung cancer: mediastinal staging in the 1990s-metaanalytic comparison of PET and CT. Radiology 213:530–536

    PubMed  CAS  Google Scholar 

  14. Toloza EM, Harpole L, McCrory DC (2003) Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest 123[Suppl 1]:147S–156S

    Google Scholar 

  15. Silvestri GA, Tanoue LT, Margolis ML et al; American College of Chest Physicians (2003) The noninvasive staging of non-small cell lung cancer: the guidelines. Chest 123[Suppl 1]:147S–156S

    Article  PubMed  Google Scholar 

  16. Reed CE, Harpole DH, Posther KE et al; American College of Surgeons Oncology Group Z0050 trial (2003) Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg 126:1943–1951

    Article  PubMed  Google Scholar 

  17. Graeter TP, Hellwig D, Hoffmann K et al (2003) Mediastinal lymph node staging in suspected lung cancer: comparison of positron emission tomography with F-18-fluorodeoxyglucose and mediastinoscopy. Ann Thorac Surg 75:231–235; discussion 235–236

    Article  PubMed  Google Scholar 

  18. Birim Ö, Kappetein AP, Stijnen T, Bogers JJC (2005) Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in non-small cell lung cancer. Ann Thorac Surg 79:375–381

    Article  PubMed  Google Scholar 

  19. Perigaud C, Bridji B, Roussel JC et al (2009) Prospective preoperative mediastinal lymph node staging by integrated positron emission tomography-computerised tomography in patients with non-small-cell lung cancer. Eur J Cardiothorac Surg 36:731–736

    Article  PubMed  Google Scholar 

  20. Alongi F, Ragusa P, Montemaggi P, Bona CM (2006) Combining independent studies of diagnostic fluorodeoxyglucose positron-emission tomography and computed tomography in mediastinal lymph node staging for non-small cell lung cancer. Tumori 92:327–333

    PubMed  Google Scholar 

  21. Turkmen C, Sonmezoglu K, Toker A et al (2007) The additional value of FDG PET imaging for distinguishing N0 or N1 from N2 stage in preoperative staging of non-small cell lung cancer in region where the prevalence of inflammatory lung disease is high. Clin Nucl Med 32:607–612

    Article  PubMed  Google Scholar 

  22. Al Sarraf N, Aziz R, Gately K et al (2008) Pattern and predictors of occult mediastinal lymph node involvement in non-small cell lung cancer patients with negative mediastinal uptake on positron emission tomography. Eur J Cardiothorac Surg 33:104–109

    Article  Google Scholar 

  23. Lee PC (2007) Risk factors for occult mediastinal metastases in clinical stage I non-small cell lung cancer. Ann Thorac Surg 84:177

    Article  PubMed  Google Scholar 

  24. Detterbeck FC, Falen S, Rivera MP et al (2004) Seeking a home for a PET, Part 2: Defining the appropiate place for positron emission tomography imaging in the staging of patients with suspected lung cancer. Chest 125:2300–2308

    Article  PubMed  Google Scholar 

  25. Spiro SG, Porter JC (2002) Lung cancer: where are we today? Current advances in staging and nonsurgical treatment. Am J Resir Crit Care Med 166:1166–1196

    Article  Google Scholar 

  26. Pfister DG, Johson DH, Azzoli CG et al; American Society of Clinical Oncology (2002) American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol 22:330–353

    Article  Google Scholar 

  27. Gould MK, Kuscher WG, Rydzak CE et al (2003) Test performance of positron emission tomogra phy and computed tomography for mediastinal staging in patients with non-small lung cancer: a meta-analysis. Ann Intern Med 139:879–892

    PubMed  Google Scholar 

  28. Cerfolio RJ, Ojha B, Bryant AS et al (2003) The role of FDG-PET scan in staging patients with non-small cell carcinoma. Am Thorac Surg 76: 861–866

    Article  Google Scholar 

  29. Van Tinteren H, Hoekstra OS, Smit EF et al (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359:1388–1393

    Article  PubMed  Google Scholar 

  30. Passlick B (2004) Mediastinal staging (take home messages). Lung Cancer [Suppl 2]:s85–s87

  31. Viney RC, Boyer MJ, King MT et al (2004) Randomized controlled trial of the role of positron emission tomography in the management of stage I and II non-small-cell lung cancer. J Clin Oncol 22:2357–2362

    Article  PubMed  Google Scholar 

  32. Herder GJ, Kramer H, Hoekstra OS et al; POORT Study Group (2004) Traditional versus up-front 18FDG PET staging of non-small cell lung cancer: a Ducth co-operative randomized study. J Clin Oncol 24:1800–1806

    Article  Google Scholar 

  33. Fischer B, Lassen U, Mortensen J et al (2009) Preoperative staging of lung cancer with combined PET-CT. N Engl J Med 361:32–39

    Article  PubMed  CAS  Google Scholar 

  34. De Geus-Oei LF, Krieken JH, Aliredjo RP et al (2007) Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 55:79–87

    Article  PubMed  Google Scholar 

  35. Groen HJM, Sleijfer DT, de Vries EGE (2005) Positron emission tomography computerized tomography, and endoscopic ultrasound with needle aspiration for lung cancer. American Society of Clinical Oncology (Educational Book), 579–585

  36. Gu P, Zhao YZ, Jiang LY et al (2009) Endobronchial ultrasound-guided transbronchial needle aspiration for staging of lung cancer: a systematic review and meta-analysis. Eur J Cancer 45:1389–1396

    Article  PubMed  Google Scholar 

  37. Rusch VW (2005) Mediastinoscopy: an endangered species? J Clin Oncol 23:8283–8285

    Article  PubMed  Google Scholar 

  38. Buck AK, Herrmann K, Schreyögg J (2011) PET/ CT for staging lung cancer: costly or cost-saving? Eur J Nucl Med Mol Imaging 38:799–801

    Article  PubMed  Google Scholar 

  39. Meyers BF, Haddad F, Siegel BA et al (2006) Cost-effectiveness of routine mediastinoscopy in computed tomography- and positron emission tomography-screened patients with stage I lung cancer. J Thorac Cardiovasc Surg 131:822–829

    Article  PubMed  Google Scholar 

  40. Ukena D, Hellwing D (2004) Value of FDG PET in the management of NSCLC. Lung Cancer 45[Suppl 2]:s75–s78

    Article  PubMed  Google Scholar 

  41. Valk PE, Pounds TR, Hopkins DM et al (1995) Staging non-small cell lung cancer by wholebody positron emission tomographic imaging. Ann Thorac Surg 60:1573–1581

    Article  PubMed  CAS  Google Scholar 

  42. Weder W, Schmid RA, Bruchlaus H et al (1998) Detection of extrathoracic metastases by positron emission tomography in lung cancer. Ann Thorac Surg 66:886–892

    Article  PubMed  CAS  Google Scholar 

  43. MacManus MP, Hicks RJ, Matthews J et al (2001) High rate of detection of unsuspected distant metastases by PET in apparent stage III non-smallcell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 50:287–293

    Article  PubMed  CAS  Google Scholar 

  44. Lardinois D, Weder W, Roudas M et al (2005) Etiology of solitary extrapulmonary positron emission tomography and computed tomography findings in patients with lung cancer. J Clin Oncol 23:6846–6853

    Article  PubMed  Google Scholar 

  45. Choi JY, Lee KY, Kwon OJ et al (2005) Improved detection of second primary cancer using integrated [18F] fluorodeoxyglucose positron emission tomography and computed tomography for initial tumor staging. J Clin Oncol 23:7654–7659

    Article  PubMed  Google Scholar 

  46. Burt M, Heelan RT, Coit D et al (1994) Prospective evaluation of unilateral adrenal masses in patients with operable non-small-cell lung cancer: Impact of magnetic resonace imaging. J Thorac Cardiovasc Surg 107:584–588

    PubMed  CAS  Google Scholar 

  47. Marom EM, McAdams HP, Erasmus JJ et al (1999) Staging non-small cell lung cancer with whole-body PET. Radiology 212:803–809

    PubMed  CAS  Google Scholar 

  48. Jana S, Zhang T, Milstein DM et al (2006) FDGPET and CT characterization of adrenal lesions in cancer patients. Eur J Nucl Med Mol Imaging 33:29–35

    Article  PubMed  Google Scholar 

  49. Kumar R, Xiu Y, Yu JQ et al (2004) 18F-FDG PET in evaluation of adrenal lesions of patients with lung cancer. J Nucl Med 45:2058–2062

    PubMed  Google Scholar 

  50. Metser U, Miller E, Lerman H et al (2006) 18FFDG PET/CT in the evaluation of adrenal masses. J Nucl Med 47:32–37

    PubMed  Google Scholar 

  51. Bury T, Barreto A, Daenen F et al (1998) Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 16:3375–3379

    Google Scholar 

  52. Cook GJ, Houston S, Rubens R et al (1998) Detection of bone metastases in breast cancer by 18FDG PET: Differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379

    PubMed  CAS  Google Scholar 

  53. Meyer M, Gast T, Raja S, Hubner K (1994) Increased F-18 FDG accumulation in an acute fracture. Clin Nucl Med 19:13–14

    Article  PubMed  CAS  Google Scholar 

  54. Qu X, Huang X, Yan W et al (2011) A metaanalysis of (18)FDG-PET-CT, (18)FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol (Epub ahead of print)

  55. Liu T, Xu JY, Xu W et al (2011) Fluorine-18 deoxyglucose positron emission tomography, magnetic resonance imaging and bone scintigraphy for the diagnosis of bone metastases in patients with lung cancer: which one is the best? — a metaanalysis. Clin Oncol (R Coll Radiol) 23:350–358

    Google Scholar 

  56. Halpern BS, Schiepers C, Weber WA et al (2005) Presurgical staging of non-small cell lung cancer: positron emission tomography, integrated positron emission tomography/CT, and software image fusion. Chest 128:2289–2297

    Article  PubMed  Google Scholar 

  57. Simó M, Cirera L, García-Garzon JR et al (2006) Impacto clínico de la PET con 18FDG en la selección de la terapia de los pacientes oncológicos. Oncología 29:150–157

    Google Scholar 

  58. Mankoff DA, Bellon JR (2001) Positron-emission tomographic imaging of cancer: glucose metabolism and beyond. Semin Radiat Oncol 11:16–27

    Article  PubMed  CAS  Google Scholar 

  59. Stroobants S, Verschakelen J, Vansteenkiste J (2003) Value of FDG-PET in the management of non-small cell lung cancer. Eur J Radiol 45:49–59

    Article  PubMed  Google Scholar 

  60. Veselle H, Schmidt RA, Pugley JM et al (2000) Lung cancer proliferation correlates with [F-18] fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 6:3837–3844

    Google Scholar 

  61. Bos R, Van der Hoeven JJ, Van Der Wall E et al (2002) Biologic correlates of (18)flurodeoxyglucose uptake in human breast cancer mesasured by positron emission tomography. J Clin Oncol 20:379–387

    Article  PubMed  CAS  Google Scholar 

  62. Duhaylongsod FG, Lowe VJ, Patz EF et al (1995) Lung tumor growth correlates with glucose metabolism measured by fluride-18-fluodeoxygluose positron emission tomography. Ann Thorac Surg 60:1348–1352

    Article  PubMed  CAS  Google Scholar 

  63. Ahuja V, Coleman RE, Herndon J, Patz EF (1998) The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with non-small-cell-lung carcinoma. Cancer 83:918–924

    Article  PubMed  CAS  Google Scholar 

  64. Vansteenkiste JF, Stroobants SG, Dupont PJ et al (1999) Prognostic importance of the standardized uptake value on FDG-PET scan in non-small-cell lung cancer: an analysis of 125 cases. J Clin Oncol 17:3201–3206

    PubMed  CAS  Google Scholar 

  65. Dhital K, Saunders CA, Seed PT et al (2000) [18F] Fluorodeoxyglucose positron emission tomography and its prognostic value in lung cancer. Eur J Cardiothorac Surg 18:425–428

    Article  PubMed  CAS  Google Scholar 

  66. Higashi K, Ueda Y, Arisaka Y et al (2002) 18FFDG uptake as a biologic prognostic for factor recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 43:39–45

    PubMed  Google Scholar 

  67. Jeong HJ, Min JJ, Park JM et al (2002) Determination of the prognostic value of [(18) F]fluorodeoxyglucose uptake by using positron emission tomography in patients with non-small cell lung cancer. Nucl Med Commun 23:865–870

    Article  PubMed  CAS  Google Scholar 

  68. Borst GR, Belderbos JSA, Boellaard R et al (2005) Captación de FDG estandarizada: un factor pronóstico en el cáncer de pulmón no microcítico inoperable. Eur J Cancer (ed. española) 41:1533–1541

    Google Scholar 

  69. Sasaki R, Komaki R, Macapinlac H et al (2005) [18F] Fluorodeoxyglucose uptake by positron emission tomography predicts outcome of nonsmall-cell lung cancer. J Clin Oncol 23:1136–1143

    Article  PubMed  CAS  Google Scholar 

  70. Lee BE, Redwine J, Foster C et al (2008) Mediastinoscopy might not be necessary in patients with non-small cell lung cancer with mediastinal lymph nodes having a maximum standardized uptake value of less than 5.3. J Thorac Cardiovasc Surg 135:615–619

    Article  PubMed  Google Scholar 

  71. Weber WA (2005) Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 49:983–995

    Google Scholar 

  72. Downey RJ, Akhurts T, Gonen M et al (2004) Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 22:3255–3260

    Article  PubMed  Google Scholar 

  73. Stahl A, Ott K, Schwaiger M, Weber WA (2004) Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET. Eur J Nucl Med Mol Imaging 31:1471–1478

    Article  PubMed  CAS  Google Scholar 

  74. Berghmans T, Dusart M, Paesmans M et al; European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project (2008) Primary tumor standarized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 3:6–12

    Article  PubMed  Google Scholar 

  75. Junker K, Langner K, Klinke F et al (2001) Grading of tumor regression in non-small-cell lung cancer: morphology and prognosis. Chest 120: 1584–1591

    Article  PubMed  CAS  Google Scholar 

  76. Yamane T, Daimaru O, Ito S et al (2004) Decreased 18F-FDG uptake 1 day after initiation of chemotherapy for malignant lymphomas. J Nucl Med 45:1838–1842

    PubMed  Google Scholar 

  77. Spaepen K, Stroobants S, Dupont P et al (2001) Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 19:414–419

    PubMed  CAS  Google Scholar 

  78. Flamen P, Van Custem E, Lerut A et al (2002) Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol 13:361–368

    Article  PubMed  CAS  Google Scholar 

  79. Wieder HA, Brücher BL, Zimmermann F et al (2004) Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 22:900–908

    Article  PubMed  CAS  Google Scholar 

  80. Ott K, Fink U, Becker K et al (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21:4604–4610

    Article  PubMed  CAS  Google Scholar 

  81. Schulte M, Brecht-Krauss D, Werner M et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643

    PubMed  CAS  Google Scholar 

  82. Su H, Bodenstein C, Dumont RA et al (2006) Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 12:5659–5667

    Article  PubMed  CAS  Google Scholar 

  83. Mak RH, Digumarthy SR, Muzikansky A et al (2011) Role of 18F-fluorodeoxyglucose positron emission tomography in predicting epidermal growth factor receptor mutations in non-small cell lung cancer. Oncologist 16:319–326

    Article  PubMed  Google Scholar 

  84. Ichiya Y, Kuwabara Y, Sasaki M et al (1996) A clinical evaluation of FDG-PET to assess the response in radiation therapy for bronchogenic carcinoma. Ann Nucl Med 10:193–200

    Article  PubMed  CAS  Google Scholar 

  85. Choi NC, Fischman AJ, Niemierko A et al (2002) Dose-response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys 54:1024–1035

    Article  PubMed  Google Scholar 

  86. MacManus MP, Hicks RJ, Matthews JP et al (2003) Positron emission tomography is superior to computed tomography scanning for responseassessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21:1285–1292

    Article  Google Scholar 

  87. Ryu JS, Choi NC, Fischman AJ et al (2002) FDGPET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: correlation with histopathology. Lung Cancer 35:179–187

    Article  PubMed  Google Scholar 

  88. Webwer WA, Petersen V, Schmidt B et al (2003) Positron emission tomography in non-small cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–2692

    Article  CAS  Google Scholar 

  89. Hoeskstra CJ, Stroobants SG, Smit EF et al (2005) Prognostic relevance of response evaluation using [18F]-2-Fluoro-2-deoxi-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol 23:8362–8370

    Article  Google Scholar 

  90. Rebollo-Aguirre AC, Ramos-Font C, Villegas Portero R et al (2010) Is FDG-PET suitable for evaluating neoadjuvant therapy in non-small cell lung cancer? Evidence with systematic review of the literature. J Surg Oncol 101:486–494

    PubMed  Google Scholar 

  91. Hoekstra CJ, Paglianiti I, Hekstra OS et al (2000) Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 27:731–743

    Article  PubMed  CAS  Google Scholar 

  92. Eschmann SM, Friedel G, Paulsen F et al (2007) 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34: 463–471

    Article  PubMed  Google Scholar 

  93. Mileshkin L, Hicks RJ, Hughes BG et al (2011) Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res 17:3304–3315

    Article  PubMed  CAS  Google Scholar 

  94. Robinson LA, Ruckdeschel JC, Wagner H Jr, Stevens CW; American College of Chest Physicians (2007) Treatment of non-small cell lung cancerstage IIIA: ACCP evidence based clinical practice guidelines (2nd edition). Chest 132:243S–265S

    Article  PubMed  Google Scholar 

  95. Ciernik IF, Dizendorf E, Baumert BG et al (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Rad Oncol Biol Phys 57:853–863

    Article  Google Scholar 

  96. Van Der Wel A, Nijsten S, Hochstenbag M et al (2005) Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3 M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 61:649–655

    Article  Google Scholar 

  97. Mah K, Caldwell C, Ung Y et al (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350

    Article  PubMed  Google Scholar 

  98. Van de Steene J, Linthout N, de Mey J et al (2002) Definition of gross tumor volume in lung cancer: interobserver variability. Radiother Oncol 62:37–49

    Article  PubMed  Google Scholar 

  99. Steenbakkers RJ, Duppen JC, Fitton I et al (2005) Observer variation in target volume delineation of lung cancer related to radiation oncologistcomputer interaction: a “Big Brother” evaluation. Radiother Oncol 24:182–190

    Article  Google Scholar 

  100. Erdi YE, Rosenzweig K, Erdi AK et al (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60

    Article  PubMed  Google Scholar 

  101. Kunkel M, Wahlmann U, Grötz KA et al (1998) [Value of (F18)-2-fluorodeoxyglucose PET scanning in staging mouth cavity carcinoma. Comparative evaluation of PET findings before and after preoperative radiochemotherapy with histological and computerized tomography findings]. Mund Kiefer Gesichtschir 2:181–187

    PubMed  CAS  Google Scholar 

  102. Munley MT, Marks LB, Scarfone C et al (1999) Multimodality nuclear medicine imaging in threedimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23:105–114

    Article  PubMed  CAS  Google Scholar 

  103. Nestle U, Walter K, Schmidt S et al (1999) 18Fdeoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    Article  PubMed  CAS  Google Scholar 

  104. Giraud P, De Rycke Y, Minet P et al (2001) Estimation of the probability of mediastinal involvement: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy in non-small-cell lung cancer? Cancer Radiother 5:725–736

    PubMed  CAS  Google Scholar 

  105. Caldwell CB, Mah K, Ung YC et al (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51:923–931

    Article  PubMed  CAS  Google Scholar 

  106. MacManus MP, Hicks RJ, Ball DL et al (2001) F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 92:886–895

    Article  CAS  Google Scholar 

  107. Ashamalla H, Rafla S, Parikh K et al (2005) The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 63:1016–1023

    Article  PubMed  Google Scholar 

  108. Messa C, Ceresoli GL, Rizzo G et al (2005) Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 49:259–266

    PubMed  CAS  Google Scholar 

  109. Vanuystel L, Vansteenkiste J, Stroobants S et al (2000) The impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324

    Article  Google Scholar 

  110. Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59:78–86

    Article  PubMed  Google Scholar 

  111. Deniaud-Alexandre E, Touboul E, Lerouge D et al (2005) Impact of computed tomography and 18F-Deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 63:1432–1441

    Article  PubMed  Google Scholar 

  112. Bruzzi JF, Truong MT, Marom EM et al (2006) Incidental findings on integrated PET/CT that do not accumulate 18F-FDG. AJR Am J Roentgenol 187:1116–1123

    Article  PubMed  Google Scholar 

  113. Aquino SL, Asmuth JC, Alpert NM et al (2003) Improved radiologic staging of lung cancer with 2-[18F]-fluoro-2-deoxy-D-glucose-positron emission tomography and computed tomography registration. J Comput Assist Tomogr 27:479–484

    Article  PubMed  Google Scholar 

  114. Verschakelen JA, De Wever W, Bogaert J (2004) Role of computed tomography in lung cancer staging. Curr Opin Pulm Med 27:479–484

    Google Scholar 

  115. Cerfolio RJ, Ojha B, Bryant AS et al (2004) The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg 78:1017–1023

    Article  PubMed  Google Scholar 

  116. Antoch G, Stattaus J, Nemat AT et al (2003) Nonsmall cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229:526–533

    Article  PubMed  Google Scholar 

  117. Vansteenkiste JF, Stroobants SG, De Leyn PR et al (1997) Mediastinal lymph node staging with FDG-PET scan in patients with potentially operable non-small cell lung cancer: a prospective analysis of 50 cases. Chest 112:1480–1486

    Article  PubMed  CAS  Google Scholar 

  118. Magnani P, Carretta A, Rizzo G et al (1999) FDG/ PET and spiral CT image fusion for medistinal lymph node assessment of non-small cell lung cancer patients. J Cardiovasc Surg 40:741–748

    CAS  Google Scholar 

  119. Pozo-Rodríguez F, Martín de Nicolás JL, Sánchez-Nistal MA et al (2005) Accuracy of helical computed tomography and [18F] Fluorodeoxyglucose positron emission tomography for identifying lymph node mediastinal metastases in potencially resectable non-small-cell lung cancer. J Clin Oncol 23:8348–8356

    Article  PubMed  Google Scholar 

  120. Bar-Shalom R, Yefremov N, Guralnik L et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient managememt. J Nucl Med 44:1200–1209

    PubMed  Google Scholar 

  121. Rodríguez Garrido M, Asensio del Barrio C (2004) PET-TAC: Indicaciones, revisión sistemática y meta-análisis. AETS-Instituto de Salud Carlos III

  122. Shim SS, Lee KS, Kim BT et al (2005) Non-small cell lung cancer: prospective comparison of integrated FDG PET/T and CT alone for preoperative staging. Radiology 236:1011–1019

    Article  PubMed  Google Scholar 

  123. Hicks RJ, Kalff V, MacManus MP et al (2001) [18F]FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 42:1596–1604

    PubMed  CAS  Google Scholar 

  124. Schmücking M, Baum RP, Griesinger F et al (2003) Molecular whole-body cancer staging using positron emission tomography: consequences for therapeutic management and metabolic radiation treatment planning. Recent Results Cancer Res 162:195–202

    PubMed  Google Scholar 

  125. Kiffer JD, Berlangieri SU, Scott AM et al (1998) The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19:167–177

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Provencio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibeas, P., Cantos, B., Gasent, J.M. et al. PET-CT in the staging and treatment of non-small-cell lung cancer. Clin Transl Oncol 13, 368–377 (2011). https://doi.org/10.1007/s12094-011-0670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-011-0670-5

Keywords

Navigation